20210101 Barbalat引理(芭芭拉引理)

一. 什么时候使用

Barbalat引理常用于非线性系统中的非自治系统(不一定非要显含 t t t,也可以是含噪声的,只要包含动态就可以)。

二. 为什么使用

首先讨论函数及其导数的渐进特性。

问题:以下结论成立吗?
( 1 )       f ˙ ( t ) → 0 , t → ∞ ⇒ f ( t ) →  const  , t → ∞ ( 2 )       f ( t ) → c o n s t , t → ∞ ⇒ f ˙ ( t ) → 0 , t → ∞ \begin{array}{l} (1)~~~~~\dot{f}(t) \rightarrow 0, t \rightarrow \infty \Rightarrow f(t) \rightarrow \text { const }, t \rightarrow \infty \\ (2)~~~~~f(t) \rightarrow \mathrm{const}, t \rightarrow \infty \Rightarrow \dot{f}(t) \rightarrow 0, t \rightarrow \infty \end{array} (1)     f˙(t)0,tf(t) const ,t(2)     f(t)const,tf˙(t)0,t
答案:不一定成立。
反例1:
f ( t ) = sin ⁡ ln ⁡ t , t > 0 f ˙ ( t ) = cos ⁡ ln ⁡ t t → 0 , t → ∞ \begin{array}{l} f(t)=\sin \ln t, t>0 \\ \dot{f}(t)=\frac{\cos \ln t}{t} \rightarrow 0, t \rightarrow \infty \end{array} f(t)=sinlnt,t>0f˙(t)=tcoslnt0,t
反例2:
f ( t ) = e − t sin ⁡ e 2 t f ˙ ( t ) = − e − t sin ⁡ e 2 t + 2 e t cos ⁡ e 2 t \begin{array}{l} f(t)=\mathrm{e}^{-t} \sin \mathrm{e}^{2 t} \\ \dot{f}(t)=-\mathrm{e}^{-t} \sin \mathrm{e}^{2 t}+2 \mathrm{e}^{t} \cos \mathrm{e}^{2 t} \end{array} f(t)=etsine2tf˙(t)=etsine2t+2etcose2t

因此,需要需要加限制条件。

Barbalat只能对第二种情况进行分析。

三. Barbalat引理

引理 2.5 2.5 \quad 2.5 如果连续可导函数 f ( t ) f(t) f(t), 当 t → ∞ t \rightarrow \infty t 时,具有有限的极限值,且 f ˙ ( t ) \dot f(t) f˙(t)一致连续的,则有
lim ⁡ t → ∞ f ˙ ( t ) = 0 \lim_{t \rightarrow \infty} \dot{f}(t)=0 tlimf˙(t)=0
成立。

什么是一致连续,可以简单理解成在连续的基础上,其函数的斜率不能大到无穷,比如说 f ( t ) = 1 t , t > 0 f(t)=\frac{1}{t}, \quad t >0 f(t)=t1,t>0就不是一致连续(越靠近0,斜率趋于无穷)。具体理解可以点击这里

也就是说,一致连续的一个充分条件是导数有界。

推论 2.3 2.3 \quad 2.3 如果可导函数 f ( t ) f(t) f(t),当 t → ∞ t \rightarrow \infty t 时,具有有限的极限值,且 f ¨ ( t ) \ddot f(t) f¨(t) 有界,则当 t → ∞ t \rightarrow \infty t 时, f ˙ ( t ) → 0 \dot f(t)\rightarrow 0 f˙(t)0 成立。

引理 2.6 2.6 \quad 2.6 一个标量函数 V ( t , x ) , V(t, \boldsymbol{x}), V(t,x), 如果满足
(1) V ( t , x ) V(t, \boldsymbol{x}) V(t,x) 下有界
(2) V ˙ ( t , x ) \dot{V}(t, \boldsymbol{x}) V˙(t,x) 半负定
(3) V ˙ ( t , x ) \dot{V}(t, \boldsymbol{x}) V˙(t,x) 关于时间 t t t 一致连续 (或者 V ¨ ( t , x ) \ddot{V}(t, \boldsymbol{x}) V¨(t,x)有界)
则当 t → ∞ t \rightarrow \infty t 时,有 V ˙ ( t , x ) → 0 \dot{V}(t, \boldsymbol{x}) \rightarrow 0 V˙(t,x)0 成立。

注:条件(3)存在的意义是,如果不成立, V ˙ ( t , x ) \dot{V}(t, \boldsymbol{x}) V˙(t,x)可能存在重复的大脉冲,其测度为0,而这个条件就有效避免了这种情况。

一个例子:
在这里插入图片描述

四. 函数一致连续的定义

连续函数 g ( t ) g(t) g(t) [ 0 , ∞ ) [0, \infty) [0,) 是连续的, 如果
∀ t 1 ⩾ 0 , ∀ R > 0 , ∃ η ( R , t 1 ) > 0 , ∀ t ⩾ 0 , \forall t_{1} \geqslant 0, \forall R>0, \exists \eta\left(R, t_{1}\right)>0, \forall t \geqslant 0, t10,R>0,η(R,t1)>0,t0,
∣ t − t 1 ∣ < η → ∣ g ( t ) − g ( t 1 ) ∣ < R \left|t-t_{1}\right|<\eta \rightarrow\left|g(t)-g\left(t_{1}\right)\right|<R tt1<ηg(t)g(t1)<R
一致连续 g ( t ) g(t) g(t) [ 0 , ∞ ) [0, \infty) [0,) 是一致连续的,如果
∀ R > 0 , ∃ η ( R ) > 0 , ∀ t 1 , t ⩾ 0 , ∣ t − t 1 ∣ < η → ∣ g ( t ) − g ( t 1 ) ∣ < R \begin{aligned} &\forall R>0, \exists \eta(R)>0, \forall t_{1}, t \geqslant 0, \\ &\left|t-t_{1}\right|<\eta \rightarrow\left|g(t)-g\left(t_{1}\right)\right|<R \end{aligned} R>0,η(R)>0,t1,t0,tt1<ηg(t)g(t1)<R
事实: 可微函数一致连续的充分条件是它的导数是有界的。因为
g ( t ) − g ( t 1 ) = g ( t 2 ) ( t − t 1 ) g(t)-g\left(t_{1}\right)=g\left(t_{2}\right)\left(t-t_{1}\right) g(t)g(t1)=g(t2)(tt1)
从而有
∣ g ( t ) − g ( t 1 ) ∣ ⩽ M ∣ t − t 1 ∣ \left|g(t)-g\left(t_{1}\right)\right| \leqslant M\left|t-t_{1}\right| g(t)g(t1)Mtt1

五. 其他形式的芭芭拉引理

在这里插入图片描述
参考文献:https://arxiv.org/pdf/1411.1611.pdf

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值