一. 什么时候使用
Barbalat引理常用于非线性系统中的非自治系统(不一定非要显含 t t t,也可以是含噪声的,只要包含动态就可以)。
二. 为什么使用
首先讨论函数及其导数的渐进特性。
问题:以下结论成立吗?
(
1
)
f
˙
(
t
)
→
0
,
t
→
∞
⇒
f
(
t
)
→
const
,
t
→
∞
(
2
)
f
(
t
)
→
c
o
n
s
t
,
t
→
∞
⇒
f
˙
(
t
)
→
0
,
t
→
∞
\begin{array}{l} (1)~~~~~\dot{f}(t) \rightarrow 0, t \rightarrow \infty \Rightarrow f(t) \rightarrow \text { const }, t \rightarrow \infty \\ (2)~~~~~f(t) \rightarrow \mathrm{const}, t \rightarrow \infty \Rightarrow \dot{f}(t) \rightarrow 0, t \rightarrow \infty \end{array}
(1) f˙(t)→0,t→∞⇒f(t)→ const ,t→∞(2) f(t)→const,t→∞⇒f˙(t)→0,t→∞
答案:不一定成立。
反例1:
f
(
t
)
=
sin
ln
t
,
t
>
0
f
˙
(
t
)
=
cos
ln
t
t
→
0
,
t
→
∞
\begin{array}{l} f(t)=\sin \ln t, t>0 \\ \dot{f}(t)=\frac{\cos \ln t}{t} \rightarrow 0, t \rightarrow \infty \end{array}
f(t)=sinlnt,t>0f˙(t)=tcoslnt→0,t→∞
反例2:
f
(
t
)
=
e
−
t
sin
e
2
t
f
˙
(
t
)
=
−
e
−
t
sin
e
2
t
+
2
e
t
cos
e
2
t
\begin{array}{l} f(t)=\mathrm{e}^{-t} \sin \mathrm{e}^{2 t} \\ \dot{f}(t)=-\mathrm{e}^{-t} \sin \mathrm{e}^{2 t}+2 \mathrm{e}^{t} \cos \mathrm{e}^{2 t} \end{array}
f(t)=e−tsine2tf˙(t)=−e−tsine2t+2etcose2t
因此,需要需要加限制条件。
Barbalat只能对第二种情况进行分析。
三. Barbalat引理
引理
2.5
2.5 \quad
2.5 如果连续可导函数
f
(
t
)
f(t)
f(t), 当
t
→
∞
t \rightarrow \infty
t→∞ 时,具有有限的极限值,且
f
˙
(
t
)
\dot f(t)
f˙(t) 是一致连续的,则有
lim
t
→
∞
f
˙
(
t
)
=
0
\lim_{t \rightarrow \infty} \dot{f}(t)=0
t→∞limf˙(t)=0
成立。
什么是一致连续,可以简单理解成在连续的基础上,其函数的斜率不能大到无穷,比如说 f ( t ) = 1 t , t > 0 f(t)=\frac{1}{t}, \quad t >0 f(t)=t1,t>0就不是一致连续(越靠近0,斜率趋于无穷)。具体理解可以点击这里。
也就是说,一致连续的一个充分条件是导数有界。
推论 2.3 2.3 \quad 2.3 如果可导函数 f ( t ) f(t) f(t),当 t → ∞ t \rightarrow \infty t→∞ 时,具有有限的极限值,且 f ¨ ( t ) \ddot f(t) f¨(t) 有界,则当 t → ∞ t \rightarrow \infty t→∞ 时, f ˙ ( t ) → 0 \dot f(t)\rightarrow 0 f˙(t)→0 成立。
引理
2.6
2.6 \quad
2.6 一个标量函数
V
(
t
,
x
)
,
V(t, \boldsymbol{x}),
V(t,x), 如果满足
(1)
V
(
t
,
x
)
V(t, \boldsymbol{x})
V(t,x) 下有界
(2)
V
˙
(
t
,
x
)
\dot{V}(t, \boldsymbol{x})
V˙(t,x) 半负定
(3)
V
˙
(
t
,
x
)
\dot{V}(t, \boldsymbol{x})
V˙(t,x) 关于时间
t
t
t 一致连续 (或者
V
¨
(
t
,
x
)
\ddot{V}(t, \boldsymbol{x})
V¨(t,x)有界)
则当
t
→
∞
t \rightarrow \infty
t→∞ 时,有
V
˙
(
t
,
x
)
→
0
\dot{V}(t, \boldsymbol{x}) \rightarrow 0
V˙(t,x)→0 成立。
注:条件(3)存在的意义是,如果不成立, V ˙ ( t , x ) \dot{V}(t, \boldsymbol{x}) V˙(t,x)可能存在重复的大脉冲,其测度为0,而这个条件就有效避免了这种情况。
一个例子:
四. 函数一致连续的定义
连续函数
g
(
t
)
g(t)
g(t) 在
[
0
,
∞
)
[0, \infty)
[0,∞) 是连续的, 如果
∀
t
1
⩾
0
,
∀
R
>
0
,
∃
η
(
R
,
t
1
)
>
0
,
∀
t
⩾
0
,
\forall t_{1} \geqslant 0, \forall R>0, \exists \eta\left(R, t_{1}\right)>0, \forall t \geqslant 0,
∀t1⩾0,∀R>0,∃η(R,t1)>0,∀t⩾0,
∣
t
−
t
1
∣
<
η
→
∣
g
(
t
)
−
g
(
t
1
)
∣
<
R
\left|t-t_{1}\right|<\eta \rightarrow\left|g(t)-g\left(t_{1}\right)\right|<R
∣t−t1∣<η→∣g(t)−g(t1)∣<R
一致连续
g
(
t
)
g(t)
g(t) 在
[
0
,
∞
)
[0, \infty)
[0,∞) 是一致连续的,如果
∀
R
>
0
,
∃
η
(
R
)
>
0
,
∀
t
1
,
t
⩾
0
,
∣
t
−
t
1
∣
<
η
→
∣
g
(
t
)
−
g
(
t
1
)
∣
<
R
\begin{aligned} &\forall R>0, \exists \eta(R)>0, \forall t_{1}, t \geqslant 0, \\ &\left|t-t_{1}\right|<\eta \rightarrow\left|g(t)-g\left(t_{1}\right)\right|<R \end{aligned}
∀R>0,∃η(R)>0,∀t1,t⩾0,∣t−t1∣<η→∣g(t)−g(t1)∣<R
事实: 可微函数一致连续的充分条件是它的导数是有界的。因为
g
(
t
)
−
g
(
t
1
)
=
g
(
t
2
)
(
t
−
t
1
)
g(t)-g\left(t_{1}\right)=g\left(t_{2}\right)\left(t-t_{1}\right)
g(t)−g(t1)=g(t2)(t−t1)
从而有
∣
g
(
t
)
−
g
(
t
1
)
∣
⩽
M
∣
t
−
t
1
∣
\left|g(t)-g\left(t_{1}\right)\right| \leqslant M\left|t-t_{1}\right|
∣g(t)−g(t1)∣⩽M∣t−t1∣