20210905 Ax=b的解的三种情况

前言

本博文给出Ax=b的解的不同视角。

A为已知矩阵,b为已知向量,x为未知向量。


一、第一类视角

Ax=b

  1. 如果b存在于A的列张成的空间中,则有解,否则无解;
  2. 如果b存在于A的列张成的空间中,且A的列均是线性无关的(列满秩),那么存在唯一解;
  3. 如果b存在于A的列张成的空间中,但A的列是线性相关的(非列满秩),那么存在多解;

二、第二类视角

Ax=b

  • A如果行满秩,说明A的秩等于行满秩的秩,也就是A的列数只能大于等于行数(多解或者唯一解)
    • A的列数等于A的行数,那么A的列是线性无关的,可以张成整个空间,对于任意的b存在解且唯一;
    • A的列数大于A的行数,那么A的列是线性相关的,虽然可以张成整个空间,对于任意的b存在多解;
  • A如果列满秩,那么A的列是线性无关的,说明A的秩等于列满秩的秩,也就是A的行数只能大于等于列数(无解或者唯一解)
    • A的行数等于A的列数,退化成满秩问题,对于任意的b存在解且唯一;
    • A的行数大于A的列数,情况分为2种(不存在多解的情况):
      • 如果b不存在于A的列张成的空间中,则无解;
      • 如果b存在于A的列张成的空间中,则有唯一解;
  • A既不是行满秩也不是列满秩(无解或者多解)
    • 如果b不存在于A的列张成的空间中,则无解;
    • 如果b存在于A的列张成的空间中,则有解,且是多解;(这里不考虑其他部分均0,可以退化成低维度满秩的情况,即不考虑[1 0; 0 0])

三、第三类视角

Ax=0

  • 如果A满足列满秩,那么x只有零解。从空间的角度看,因为A列满秩,所以A的列线性无关,所以线性组合成任意一个矢量都只有一个解;如果A是方阵,且满秩,那么只有零解。
  • 如果A不满足列满秩,存在多解。

四、注

注:考虑对方阵 M M M求特征向量和特征值时, ( M − λ I ) x = 0 (M-\lambda I)x=0 (MλI)x=0,特征向量一定不会是零向量,所以 M − λ I M-\lambda I MλI一定不是满秩的(否则 x x x只能是零向量),也就一定有零特征根,那么 M − λ I M-\lambda I MλI的行列式等于其所有特征值之积,那么 M − λ I M-\lambda I MλI的行列式一定等于0。

总结

不同视角可以快速理解复杂的数学情况。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值