前言
本博文给出Ax=b的解的不同视角。
A为已知矩阵,b为已知向量,x为未知向量。
一、第一类视角
Ax=b
- 如果b存在于A的列张成的空间中,则有解,否则无解;
- 如果b存在于A的列张成的空间中,且A的列均是线性无关的(列满秩),那么存在唯一解;
- 如果b存在于A的列张成的空间中,但A的列是线性相关的(非列满秩),那么存在多解;
二、第二类视角
Ax=b
- A如果行满秩,说明A的秩等于行满秩的秩,也就是A的列数只能大于等于行数(多解或者唯一解)
- A的列数等于A的行数,那么A的列是线性无关的,可以张成整个空间,对于任意的b存在解且唯一;
- A的列数大于A的行数,那么A的列是线性相关的,虽然可以张成整个空间,对于任意的b存在多解;
- A如果列满秩,那么A的列是线性无关的,说明A的秩等于列满秩的秩,也就是A的行数只能大于等于列数(无解或者唯一解)
- A的行数等于A的列数,退化成满秩问题,对于任意的b存在解且唯一;
- A的行数大于A的列数,情况分为2种(不存在多解的情况):
- 如果b不存在于A的列张成的空间中,则无解;
- 如果b存在于A的列张成的空间中,则有唯一解;
- A既不是行满秩也不是列满秩(无解或者多解)
- 如果b不存在于A的列张成的空间中,则无解;
- 如果b存在于A的列张成的空间中,则有解,且是多解;(这里不考虑其他部分均0,可以退化成低维度满秩的情况,即不考虑[1 0; 0 0])
三、第三类视角
Ax=0
- 如果A满足列满秩,那么x只有零解。从空间的角度看,因为A列满秩,所以A的列线性无关,所以线性组合成任意一个矢量都只有一个解;如果A是方阵,且满秩,那么只有零解。
- 如果A不满足列满秩,存在多解。
四、注
注:考虑对方阵 M M M求特征向量和特征值时, ( M − λ I ) x = 0 (M-\lambda I)x=0 (M−λI)x=0,特征向量一定不会是零向量,所以 M − λ I M-\lambda I M−λI一定不是满秩的(否则 x x x只能是零向量),也就一定有零特征根,那么 M − λ I M-\lambda I M−λI的行列式等于其所有特征值之积,那么 M − λ I M-\lambda I M−λI的行列式一定等于0。
总结
不同视角可以快速理解复杂的数学情况。