基于FPGA的一维卷积神经网络算法实现(1D-CNN、BNN的FPGA加速实现)

文章介绍了基于FPGA的1维卷积神经网络(1D-CNN)算法加速方案,采用VerilogHDL实现,包括卷积、池化、批标准化等层,特别地,除第一层外,其他层利用二值化运算提升速度。网络结构经Python训练后移植到FPGA,支持IntelAltera和AMDXilinxFPGA,适用于音频、文本等序列数据处理任务。
摘要由CSDN通过智能技术生成

概要

本文介绍一种基于FPGA的1维卷积神经网络算法加速实现的方案,其中为了进一步提升运算速度,除了第一层卷积采用的是普通卷积运算(CONV),其余卷积层和池化层采用的是二值化运算,即二值化的卷积与池化。

运算过程包含了卷积层、池化层、批标准化层、全局池化、二值化卷积、全连接层、激活函数层,均采用RTL级代码实现,即全部采用Verilog HDL代码实现,兼容Intel Altera FPGA 与 AMD Xilinx FPGA,便于移植。

网络结构

具体网络结构如下表所示:
在这里插入图片描述
此项目先用python代码实现训练和推理过程,获得权重,然后再将推理过程移植到FPGA上进行。
python运算过程一共分为17层,在FPGA实现时将其划分为7个大层,运算过程包含了卷积层、池化层、批标准化层、全局池化、二值化卷积、全连接层、激活函数层,均采用RTL级代码实现,即全部采用Verilog HDL代码实现,兼容Intel Altera FPGA 与 AMD Xilinx FPGA。

一维卷积介绍(科普性质)

1D-CNN是指一维卷积神经网络(1D Convolutional Neural Network),它是卷积神经网络的一种变体。1D-CNN主要用于处理一维序列数据,比如音频、文本等。与传统的全连接神经网络相比,1D-CNN可以更好地处理序列数据中的局部关系,因此在语音识别、自然语言处理、时间序列预测等任务中表现较好。

1D-CNN使用卷积层来提取序列数据中的特征。卷积层通过滑动一个固定大小的窗口在输入数据上进行卷积操作,提取窗口内的特征,然后将这些特征映射到下一层。与二维卷积神经网络(2D-CNN)类似,1D-CNN还可以使用池化层来减少特征映射的维度和计算量。

1D-CNN通常由多个卷积层和池化层交替组成,最后使用全连接层将提取的特征映射到输出。在训练过程中,1D-CNN使用反向传播算法来更新模型参数,以最小化损失函数。

1D-CNN主要由以下几部分组成:

输入层:接收一维序列数据作为模型的输入。

卷积层:使用一系列可训练的卷积核在输入数据上滑动并提取特征。卷积操作能够有效地提取局部信息,从而捕捉输入序列的局部模式。

批标准化(Batch Normalization):用于加速网络收敛和提高模型的鲁棒性,使得模型更易于训练。

激活函数:对卷积层的输出进行非线性变换,增强模型的表达能力。

池化层:通过对卷积层输出进行降维,减少计算量,同时提高模型的鲁棒性和泛化能力。

全连接层:将池化层的输出映射到模型的输出,通常用于分类、回归等任务。

在使用1D-CNN时,我们通常需要设置一些超参数,比如卷积核的大小、卷积层的个数、池化操作的方式、激活函数的选择等等。这些超参数的选择会影响模型的性能和效率,需要通过实验进行调整。

1D-CNN在处理时间序列数据方面表现良好,比如音频信号处理、文本分类、情感分析、股票价格预测等任务。它能够自动提取数据中的重要特征,从而减少人工特征提取的工作量,同时具有较好的泛化性能。

本节内容转载自:机器朗读 https://www.bilibili.com/read/cv23110682?from=search&spm_id_from=333.337.0.0 出处:bilibili

FPGA架构

包含按键消抖、串口接收、串口发送、卷积算法模块

在这里插入图片描述

FPGA端口定义

module fpga_top(
    input           sys_clk,            //外部50M时钟
    input           sys_rst_n,          //外部复位信号,低有效
    input  [1:0]    key      ,          //按键,低有效
    output [1:0]    led      ,          //LED,低有效-未使用

    input           uart_rxd,           //UART接收端口
    output          uart_txd            //UART发送端口
    );

操作步骤

  • 1.加载程序,打开串口,波特率:9600
  • 2.按下key0,将串口RAM地址清零;
  • 3.将准备好输入数据通过串口下发给FPGA(以16进制格式发送)
  • 4.按下key1,启动卷积推理运算;
  • 5.运算完成后,结果将以串口形式返回
  • 6.串口接收端:设置为ASCII码格式接收,将返回最大值对应的索引值。

结果演示

提示:这里可以添加总结

在这里插入图片描述
在这里插入图片描述

总结

以上即为基于FPGA的1D-CNN或BNN的大致介绍,该项目非常便于移植到各种不同应用场景,欢迎交流沟通,本项目在Altera FPGA和Xilinx FPGA开发板上均通过上板验证。如需代码,请私信获取。
另外,本人专业从事图像处理算法、AI深度学习算法、各种神经网络算法的FPGA加速实现多年,可基于Matlab、Python的算法代码进行FPGA加速实现,如需合作,欢迎私信沟通。

卷积神经网络CNN)是一种广泛应用于图像识别、语音识别和自然语言处理等领域的神经网络模型。CNN 的核心是卷积层(Convolutional Layer),而池化层(Pooling Layer)则是卷积神经网络中的常用组件之一。池化层的主要作用是减少特征图的尺寸,并提取图像的主要特征,从而降低计算复杂度和模型参数数量,同时提高模型的鲁棒性和泛化能力。本文将对 CNN 中的池化层进行详细介绍,包括池化操作的定义、常用类型、作用原理、实现方式和应用场景等方面。 1. 池化操作的定义 池化操作是指对输入特征图进行采样和压缩,以减小特征图的尺寸和维度,并提取特征信息的过程。池化操作可以通过对输入的每个局部区域进行聚合或统计,得到一个单一的输出值,从而将特征图的大小缩小到原来的一半或更小。 2. 池化操作的常用类型 在 CNN 中,常用的池化操作包括最大池化(Max Pooling)、平均池化(Average Pooling)、L2池化(L2 Pooling)等。其中,最大池化是最常用的一种池化操作,其定义如下: $Max\ Pooling:\ y_{i,j}=\max(x_{(i-1)s+1:i\times s,(j-1)s+1:j\times s})$ 其中,$x$ 表示输入特征图,$y$ 表示输出特征图,$s$ 表示池化操作的步长。具体而言,最大池化操作将输入特征图中每个大小为 $s\times s$ 的不重叠区域视为一个整体,然后在该区域内选择最大的元素作为输出值,从而得到一个更小的特征图。 相比于最大池化,平均池化操作则是对输入区域内的元素进行简单平均,并将结果作为输出值: $Average\ Pooling:\ y_{i,j}=\frac{1}{s^2}\sum_{m=(i-1)s+1}^{i\times s}\sum_{n=(j-1)s+1}^{j\times s}x_{m,n}$ 而 L2 池化则是对输入区域内的元素进行二次平均,并将结果开方作为输出值: $L2\ Pooling:\ y_{i,j}=\sqrt{\frac{1}{s^2}\sum_{m=(i-1)s+1}^{i\times s}\sum_{n=(j-1)s+1}^{j\times s}x_{m,n}^2}$ 3. 池化操作的作用原理 池化层的主要作用是减小特征图的尺寸,并提取图像的主要特征。在 CNN 中,每个卷积层都会生成一组特征图,其中每个特征图都对应一个特定的特征。这些特征图在经过卷积层后,其尺寸通常会减小,但特征信息却会得到增强。 然而,在某些情况下,特征图的尺寸可能会过大,导致模型计算复杂度较高,并且容易出现过拟合的问题。此时,池化层的作用就体现出来了。通过对特征图进行池化操作,可以将其尺寸缩小到原来的一半或更小,从而减少计算量和参数数量,同时还可以提取图像的主要特征。此外,池化操作还可以增强特征的不变性,即使输入图像发生微小变化,所提取的特征也可以保持不变。 4. 池化操作的实现方式 在实际应用中,池化操作通常采用硬件实现或软件实现,具体方式如下: 硬件实现:在硬件实现中,池化操作通常使用专门的硬件加速器进行计算,以提高计算效率和吞吐量。例如,GPU(图形处理器)和FPGA(现场可编程门阵列)等硬件平台都可以用于卷积和池化操作的加速。 软件实现:在软件实现中,池化操作通常使用常规的计算库或框架进行计算,例如 TensorFlow、PyTorch、Caffe 等。这些框架都提供了相应的池化函数,可以方便地实现池化操作。 5. 池化操作的应用场景 池化层是卷积神经网络中的重要组件之一,广泛应用于图像识别、语音识别和自然语言处理等领域。下面介绍几个常见的应用场景: 图像分类:在图像分类任务中,池化层可以帮助模型提取主要的特征,并减小特征图的尺寸。例如,使用最大池化操作可以提取图像中最显著的特征,而使用平均池化则可以对图像中的细节进行平滑处理。 目标检测:在目标检测任务中,池化层可以帮助模型识别目标的位置和大小。例如,使用最大池化操作可以缩小特征图的尺寸,并提取目标的主要特征。然后,基于这些特征可以进一步确定目标的位置和大小。 语音识别:在语音识别任务中,池化层可以帮助模型提取主要的声学特征,并减小输入序列的长度。例如,在语音识别中,池化层可以对输入语音信号进行分帧和压缩,从而提取语音中的主要特征。 自然语言处理:在自然语言处理任务中,池化层可以帮助模型提取文本中的主要特征,并减小输入序列的长度。例如,在文本分类中,池化层可以对输入文本进行分词和压缩,从而提取文本中的主要特征。 综上所述,池化层是卷积神经网络中的重要组件之一,可以帮助模型减小特征图的尺寸,并提取图像、语音和文本等数据中的主要特征。在实际应用中,池化层通常采用最大池化、平均池化、L2池化等操作,可以通过硬件实现或软件实现来完成。池化层的应用场景非常广泛,包括图像分类、目标检测、语音识别和自然语言处理等领域。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值