pandas速查表总结

数据创建

代码作用
pd.Series([1, 2, 3, 4, 5])list创建Series
dates = pd.date_range(‘20171022’, periods=6)创建时间索引
pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list([‘c1’, ‘c2’, ‘c3’, ‘c4’]))列标签
pd.DataFrame.from_dict({“A”:1, “B”:2, “C”:3}, orient=‘index’).T字典创建DataFrame

数据读写

代码作用
df = pd.DataFrame(pd.read_csv(‘input.csv’,header=1))读取csv
df = pd.DataFrame(pd.read_excel(‘input.xlsx’))读取xlsx
df_inner.to_csv(‘output.csv’)写入CSV
df_inner.to_excel(‘output.xlsx’, sheet_name=‘sheet1’)写入Excel
  • 设置列名dataframe.columns=[‘col1’,‘col2’,‘col3’]
  • 设置索引dataframe.set_index(“col_name”)

read_csv有很多参数,挑几个常用的:

  • sep: 指定分割符,默认是’,’
  • header: 指定第几行作为列名,如果没有指定列名,默认header=0; 如果指定了列名header=None
  • names 指定列名,如果文件中不包含header的行,应该显性表示header=None
  • dtype: 指定列数据类型 E.g. {‘a’: np.float64, ‘b’: np.int32}
  • nrows: int 读取的行数 E.g.pd.read_csv(file_path,skiprows=9,nrows=10)
  • parse_dates 合并1,3列作为一个日期列使

数据查看

代码作用
df.shape()维度
df.info()数据表基本信息(维度、列名称、数据格式、所占空间等)
df.dtypes()列数据的格式
df[‘Name’].dtype()某一列数据类型
df.isnull( obj )
df.isna( obj )
查看空值
df[‘Name’].unique()某一列的唯一值
df.values()数据表的值
df.columns()列名称
df.head( n=5 )查看前n/5行数据
df.tail( n=5 )查看后n/5行数据
  • 有的资料说head()和tail()默认是查看前后的10行,可能是版本问题,我这里是python3.8.1, pandas1.0.1
  • df.isna(obj)参数obj可以是series,list,DatetimeIndex,dataframe等

数据操作

代码作用
df.fillna(value=0)数字0填充空值
df[‘prince’].fillna(df[‘prince’].mean())使用列prince的均值对NA进行填充
df[‘city’]=df[‘city’].map(str.strip)清除city字段的字符空格
df[‘city’]=df[‘city’].str.lower()大小写转换
df[‘price’].astype(‘int’)更改数据格式
df.rename(columns={‘category’: ‘category-size’})更改列名称
df[‘city’].replace(‘sh’, ‘shanghai’)数据替换
df.dropna(how=‘any’)去掉包含缺失值的行

数据提取

代码作用
df.loc[:, [‘chrom’, ‘q_value’]]索引+列标签切片
df.loc[0, [‘chrom’]]
df.loc[0, ‘chrom’]
df.at[0, ‘chrom’]
df.iloc[1, 1]
df.iat[1, 1]
提取一个标量
df.iloc[3]
df.loc[3]
提取一行
df.iloc[0:5]
df.iloc[3:5, 0:2]
df.iloc[[1, 2, 4], [0, 2]]
df.iloc[1:3, :]
df_inner.ix[:‘2013-01-03’,:4]
提取区域
df[‘city’].isin([‘beijing’])判断city列的值是否为北京
df.loc[df[‘city’].isin([‘beijing’,‘shanghai’])]判断city列里是否包含beijing和shanghai,然后将符合条件的数据提取出来
pd.DataFrame(category.str[:3])提取前三个字符,并生成数据表
df.loc[:, [‘chrom’, ‘q_value’]]索引+列标签切片

数据筛选

代码作用
df.loc[(df_inner[‘age’] > 25) & (df[‘city’] == ‘beijing’), [‘id’,‘city’,‘age’,‘category’,‘gender’]]使用“与”进行筛选
df.loc[(df_inner[‘age’] > 25) | (df[‘city’] == ‘beijing’), [‘id’,‘city’,‘age’,‘category’,‘gender’]].sort([‘age’]) df.loc[(df[‘city’] != ‘beijing’), [‘id’,‘city’,‘age’,‘category’,‘gender’]].sort([‘id’])使用“非”条件进行筛选
df.loc[(df[‘city’] != ‘beijing’),[‘id’,‘city’,‘age’,‘category’,‘gender’]].sort([‘id’]).city.count()对筛选后的数据按city列进行计数
df.query(‘city == [“beijing”, “shanghai”]’)使用query函数进行筛选
df.query(‘city == [“beijing”, “shanghai”]’).price.sum()对筛选后的结果按prince进行求和

数据统计

代码作用
df_inner.groupby(‘city’).count()对所有的列进行计数汇总
df_inner.groupby(‘city’)[‘id’].count()按城市对id字段进行计数
df_inner.groupby([‘city’,‘size’])[‘id’].count()对两个字段进行汇总计数
df_inner.groupby(‘city’)[‘price’].agg([len,np.sum, np.mean])对city字段进行汇总,并分别计算prince的合计和均值
df_inner.sample(n=3)简单的数据采样
weights = [0, 0, 0, 0, 0.5, 0.5]df_inner.sample(n=2, weights=weights)手动设置采样权重
df_inner.sample(n=6, replace=False)采样后不放回
df_inner.sample(n=6, replace=True)采样后放回
df_inner.describe().round(2)数据表描述性统计
df_inner[‘price’].std()计算列的标准差
df_inner[‘price’].cov(df_inner[‘m-point’])计算两个字段间的协方差
df_inner.cov()数据表中所有字段间的协方差
df_inner[‘price’].corr(df_inner[‘m-point’])两个字段的相关性分析
相关系数在-1到1之间,接近1为正相关,接近-1为负相关,0为不相关
df_inner.corr()数据表的相关性分析

操作数据表结构

代码作用
df.set_index(‘id’)设置索引列
df.sort_values(by=[‘age’])按照 age 列排序
df.sort_index()按照索引列排序
df[‘group’] = np.where(df_inner[‘price’] > 3000,‘high’,‘low’)如果prince列的值>3000,group列显示high,否则显示low
df.loc[(df[‘city’] == ‘beijing’) & (df[‘price’] >= 4000), ‘sign’]=1对复合多个条件的数据进行分组标记
pd.DataFrame((x.split(’-’) for x in df[‘category’]),index=df.index,columns=[‘category’,‘size’]))对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size
df=pd.merge(df_inner,split,right_index=True, left_index=True)将完成分裂后的数据表和原df_inner数据表进行匹配
df.reset_index()重设索引
df=df.set_index(‘date’)设置日期为索引

数据表合并

代码作用
df=pd.merge(df,df1,how=‘inner’)内连接(取两个集合的交集)
df_left=pd.merge(df,df1,how=‘left’)左连接(以 df 为基准,df1 在 df 中无匹配则为空)
df_right=pd.merge(df,df1,how=‘right’)右连接(以 df1 为基准,df 在 df1 中无匹配则为空)
df_outer=pd.merge(df,df1,how=‘outer’)全连接(取两个集合的并集,包含有 df , df1 的全部数据行,无匹配则填充空)

修改列名

代码作用
a.columns = [‘a’,‘b’,‘c’]列名全部修改
a.rename(columns={‘A’:‘a’}, inplace = True)修改部分列名

细节总结

inplace参数

pandas 中 inplace 参数在很多函数中都会有,它的作用是:是否在原对象基础上进行修改
inplace = True:不创建新的对象,直接对原始对象进行修改;
inplace = False:对数据进行修改,创建并返回新的对象承载其修改结果。
默认是False,即创建新的对象进行修改,原对象不变,和深复制和浅复制有些类似。
E.g.:df.drop([“A”],axis=1,inplace=True)

map()

apply()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值