机器学习、深度学习中常用的优化算法详解——梯度下降法、牛顿法、共轭梯度法

一、梯度下降法

1、总述:

在机器学习中,基于基本的梯度下降法发展了三种梯度下降方法,分别为随机梯度下降法,批量梯度下降法以及小批量梯度下降法
(1)批量梯度下降法(Batch Gradient Descent,BGD)
BGD 得到的是一个全局最优解,但是批量梯度下降法在更新每一个参数时,都需要所有的训练样本,如果样本的数量很大,那么可想而知这种方法的迭代速度会相当的慢。从迭代的次数上来看,BGD迭代的次数相对较少。
(2)随机梯度下降(Stochastic Gradient Descent,SGD)
随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经迭代到最优解了,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD 伴随的一个问题是噪音较 BGD 要多,使得 SGD 并不是每次迭代都向着整体最优化方向。从迭代的次数上来看,SGD 迭代的次数较多,在解空间的搜索过程看起来很盲目。
(3)小批量梯度下降法(Mini-batch Gradient Descent,MBGD)
有上述的两种梯度下降法可以看出,其各自均有优缺点,那么能不能在两种方法的性能之间取得一个折衷呢?即,算法的训练过程比较快,而且也要保证最终参数训练的准确率,而这正是小批量梯度下降法(Mini-batch Gradient Descent,简称MBGD)的初衷。
(4)总结:

梯度下降法 方法 优点 缺点
批量梯度下降法 最小化所有训练样本的损失函数,使得最终求解的是全局的最优解,即求解的参数是使得风险函数最小,但是对于大规模样本问题效率低下 容易找到全局最优解;易于并行实现 当样本数目很多时,训练过程会很慢
随机梯度下降 最小化每个样本的损失函数,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近,适用于大规模训练样本情况 训练速度快 准确度下降;对于非凸问题,只能收敛到局部最优;不易于并行实现。
小批量梯度下降法 以损失很小的一部分精确度和增加一定数量的迭代次数为代价,换取了总体的优化效率的提升。增加的迭代次数远远小于样本的数量 训练过程较快,而且也要保证最终参数训练的准确率 容易达到局部最优
2、什么是梯度下降法

(1) 梯度下降法示例
举个例子:比如当我们要做一个房屋价值的评估系统,那都有哪些因素决定或影响房屋的价值呢?比如说面积、房子的大小(几室几厅)、地段、朝向等等,这些影响房屋价值的变量被称为特征(feature)。在这里,为了简单,我们假定房屋只由一个变量影响,那就是房屋的面积。
假设有一个房屋销售的数据如下:

面积( m 2 \displaystyle m^{2} m2) 销售价钱(万元)
123 250
150 320
87 160
102 220

可以做出一个图,x轴是房屋的面积。y轴是房屋的售价,如下:
在这里插入图片描述
如果来了一个新的房子/面积,假设在房屋销售价格的记录中没有的,怎么办呢?
可以用一条曲线去尽量准的拟合这些数据,然后如果有新的输入面积,我们可以在将曲线上这个点对应的值返回。如果用一条直线去拟合房屋价格数据,可能如下图这个样子:
在这里插入图片描述
而图中绿色的点就是我们想要预测的点。

  • 为了数学建模,首先给出一些概念和常用的符号。
  • 房屋销售记录表 – 训练集(training set)或者训练数据(training data), 是我们流程中的输入数据,一般称为x
  • 房屋销售价钱 – 输出数据,一般称为y
  • 拟合的函数(或者称为假设或者模型),一般写做 y = h(x)
  • 训练数据的条目数(#training set), 一条训练数据是由一对输入数据和输出数据组成的
  • 输入数据的维度(特征的个数,#features),n

然后便是一个典型的机器学习的过程,首先给出一个输入数据,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计,也被称为构建一个模型。
在这里插入图片描述
X 1 \displaystyle X_{1} X1 X 2 \displaystyle X_{2} X2 X N \displaystyle X_{N} XN去描述feature里面的分量,比如 X 1 \displaystyle X_{1} X1=房间的面积, X 2 \displaystyle X_{2} X2=房间的朝向等等,可以做出一个估计函数:
在这里插入图片描述
θ θ θ在这儿称为参数,在这儿的意思是调整feature中每个分量的影响力,就是到底是房屋的面积更重要还是房屋的地段更重要。
如果我们令 X 0 \displaystyle X_{0} X0 = 1,就可以用向量的方式来表示了:
在这里插入图片描述
程序也需要一个机制去评估我们 θ θ θ是否比较好,所以说需要对我们做出的h函数进行评估,一般这个进行评估的函数称为损失函数(loss function),描述h函数不好的程度,这里我们称这个函数为 J J J函数。
在这里插入图片描述
换言之,把对 X i \displaystyle X_{i} X

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值