Pytorch实现CNN经典网络框架(LeNet、AlexNet、VGGNet、GoogLeNet、ResNet)

卷积神经网络可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀。CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF Net到VGG,GoogLeNet再到ResNet和最近的DenseNet,网络越来越深,架构越来越复杂,解决反向传播时梯度消失的方法也越来越巧妙。下面介绍几种网络的结构框架和代码实现。

一、LeNet

1、介绍
LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务。 一共有7层,其中2层卷积和2层化层交替出现,最后输出3层全连接层得到整体的结果。没有添加激活层。
随后CNN的最基本的架构就定下来了:卷积层、池化层、全连接层。如今各大深度学习框架中所使用的LeNet都是简化改进过的LeNet-5(-5表示具有5个层),和原始的LeNet有些许不同,比如把激活函数改为了现在很常用的ReLu。
LeNet-5跟现有的conv->pool->ReLU的套路不同,它使用的方式是conv1->pool->conv2->pool2再接全连接层,但是不变的是,卷积层后紧接池化层的模式。
2、网络结构
在这里插入图片描述
3、代码实现

import torch.nn as nn

class Lenet(nn.Module):
    def __init__(self):
        super(Lenet,self).__init__()
        layer1 = nn.Sequential()
        layer1.add_module('conv1',nn.Conv2d(1,6,3,padding=1))
        layer1.add_module('pool1',nn.MaxPool2d(2,2))
        self.layer1 = layer1
        
        layer2 = nn.Sequential()
        layer2.add_module('conv2',nn.Conv2d(6,16,5))
        layer2.add_module('pool2',nn.MaxPool2d(2,2))
        self.layer2 = layer2
        
        layer3 = nn.Sequential()
        layer3.add_module('fc1',nn.Linear(400,120))
        layer3.add_module('fc2',nn.Linear(120,84))
        layer3.add_module('fc3',nn.Linear(84,10))
        
        self.layer3 = layer3
        
    def forward(self,x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = x.view(x.size(0),-1)
        x = self.layer3(x)
        
        return x

二、AlexNet

1、介绍
2012年AlexNet框架在ImageNet竞赛上面大放异彩的,它以领先第二名10%的准确度夺得冠军。掀起了卷积神经网络在图像领域的热潮。AlexNet相比于LeNet层数更深,第一次引入了激活层ReLU,并且在全连接层加入了Dropout防止过拟合。
2、网络结构
在这里插入图片描述
3、代码实现

class AlexNet(nn.Module):
    def __init__(self,num_classes):
        super(AlexNet,self).__init__()
        #特征抽取
        self.features = nn.Sequential(
            nn.Conv2d(2,64,kernel_size=11,stride=4,padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3,stride=2),
            
            nn.Conv2d(64,192,kernel_size=3,padding
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值