使用Horovod 实现TensorFlow、Keras、PyTorch分布式训练

一、什么是Horovod

Horovod是基于Ring-AllReduce方法的深度分布式学习插件,以支持多种流行架构包括TensorFlow、Keras、PyTorch等。这样平台开发者只需要为Horovod进行配置,而不是对每个架构有不同的配置方法。
Ring-AllReduce方法是把每个计算单元构建成一个环,要做梯度平均的时候每个计算单元先把自己梯度切分成N块,然后发送到相邻下一个模块。现在有N个节点,那么N-1次发送后就能实现所有节点掌握所有其他节点的数据。这个方法被证明是一个带宽最优算法。
在这里插入图片描述

二、什么是分布式

1、模型并行

即把复杂的神经网络拆分,分布在计算单元或者GPU里面进行学习,让每个GPU同步进行计算。这个方法通常用在模型比较复杂的情况下。

2、数据并行

即让每个机器里都有一个完整模型,然后把数据切分成n块,把n块分发给每个计算单元,每个计算单元独自计算出自己的梯度。同时每个计算单元的梯度会进行平均、同步,同步后的梯度可以在每个节点独立去让它修正模型,整个过程结束后每个节点会得到同样的模型。这个方法可以让能够处理的数据量增加,变成了原来的n倍。
在这里插入图片描述
在这里插入图片描述

三、TensorFlow、Keras、PyTorch代码怎么使用Horovod

1、keras实例

单机Keras训练

from tensorflow import keras 
import tensoflow.keras.backend as K
import tensorflow as tf

model = ...
x_train, y_train, x_test, y_test = ...
opt = keras.optimizers.Adadelta(lr=1.0)
model.complie(
    loss = 'categprical_crossentropy',
    optimizer=opt,
    metrics=['accuracy'])

Horovod+Keras分布式训练

from tensorflow import keras 
import tensoflow.keras.backend as K
import tensorflow as tf
import horovod.tensorflow.keras as hvd

#Initialize Horovod
hvd.init()

#Pin GPU to be used
config = tf.ConfigProton
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值