跨模态图文检索:使用生成模型改进文本-视觉跨模态检索

《Look, Imagine and Match: Improving Textual-Visual Cross-Modal Retrieval with Generative Models》(2018 CVPR)

这篇文章提出了一种改进的跨模态检索方法,即,将生成式模型纳入文本视觉特征嵌入中,以进行跨模态检索。

传统的跨模态检索用的都是高层的全局抽象特征,而这篇文章还引入了基于两种生成模型的局部底层特征,从而捕捉到两种模态的数据之间更加细粒度的关联。

主要思想

提出的框架如图所示:


整个系统由3条训练路径组成。整个上半部分是第1条路径,由一个图像编码器和两个句子编码器组成,将不同模态的特征映射到一个公共空间中。这个类似于现有的大多数跨模态特征嵌入方法,但区别在于这里使用了两个特征嵌入分支,即将特征分成了高级抽象特征和底层特征。底层特征在后面两条路径中会用到。在第一条路径里,使用两个连续的语句编码器(例如GRU)来获取语义特征;对于图像编码,则使用在ImageNet上经过预训练的CNN来提取特征。特征嵌入和特征映射用这两个式子表示:

括号里表示编码过程,外部函数是一个线性转换函数,表示从原始文本/图像到公共语义空间的映射过程。使用成对排名损失函数来对这个过程进行优化。

第二条路径是图像到文本的训练路径,目标是用底层视觉特征生成接近真实文本的语句,由一个图像编码器和一个语句解码器组成。首先用图像编码器对图像进行编码,然后用语句解码器将图像编码解码生成一个语句。和传统的RNN文本生成模型一样,这里用到了交叉熵损失函数:

但是交叉熵损失知识一个单词级别的度量,为了确保生成文本呃可读性和流畅性,这里加入了强化学习损失函数:


在优化过程中,首先对交叉熵损失进行优化,然后再对整体损失进行优化。这是为了实现退火算法和更快地达到收敛。

第三条路径是文本到图像的训练过程,目标是用底层文本特征生成尽可能真实的图像,由两个语句编码器和一个对抗模型组成。其中,生成对抗模型由一个鉴别器和一个生成器组成,两者进行min-max博弈,对应的损失函数如下:

这里给出了一个伪算法。for循环里的语句分别对应3条路径,下面2个函数分别表示路径2和3的实现过程。

实验结果

在MSCOCO大型数据集上进行了实验。

创新点

将生成模型融到传统的跨模态检索过程中,将高层抽象特征和底层特征相结合,得到的GXN框架的检索性能显著优于最先进的方法

future work

还可以尝试其它的鉴别器或生成器,进一步提高生成图像的质量。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值