矩阵的内积外积-正交化-标准化-正交标准化-矩阵的逆

本文介绍了矩阵的基本操作,包括内积(点乘)、外积、向量的标准化(归一化)以及正交标准化的概念。点乘为零的两个向量被认为是正交的。外积表示为u·vT。向量标准化通过除以范数使其长度为1。正交标准化的向量满足uT⋅v=0且范数为1。讨论了逆矩阵的性质,只有方阵且行列式不为0的矩阵才有逆,并给出了逆矩阵的计算公式。
摘要由CSDN通过智能技术生成

点乘(Inner product)内积

u u u and v v v 是列向量. u = [ u 1 , u 2 , u 3 ] u = [u_1, u_2, u_3] u=[u1,u2,u3] and v = [ v 1 , v 2 , v 3 ] v = [v_1, v_2, v_3] v=[v1,v2,v3]

D o t P r o d u c t ( u , v ) = u T ⋅ v = u 1 ∗ v 1 + u 2 ∗ v 2 + u 3 ∗ v 3 DotProduct(u, v) = u^T\cdot{v} = u_1*v_1 + u_2*v_2 + u_3*v_3 DotProduct(u,v)=uTv=u1v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值