动态规划,自底向上
base case:
注意当word为空时,应该对应下标-1,所以在建立动态规划表的时候要是单词的长度+1
转移方程:
(一)、当word1[i]==word2[j]时,由于遍历到了i和j,说明word1的0i-1和word2的0j-1的匹配结果已经生成,
由于当前两个字符相同,因此无需做任何操作,dp[i][j]=dp[i-1][j-1]
(二)、当word1[i]!=word2[j]时,可以进行的操作有3个:
① 替换操作:可能word1的0i-1位置与word2的0j-1位置的字符都相同,
只是当前位置的字符不匹配,进行替换操作后两者变得相同,
所以此时dp[i][j]=dp[i-1][j-1]+1(这个加1代表执行替换操作)
②删除操作:若此时word1的0i-1位置与word2的0j位置已经匹配了,
此时多出了word1的i位置字符,应把它删除掉,才能使此时word1的0~i(这个i是执行了删除操作后新的i)
和word2的0~j位置匹配,因此此时dp[i][j]=dp[i-1][j]+1(这个加1代表执行删除操作)
③插入操作:若此时word1的0i位置只是和word2的0j-1位置匹配,
此时只需要在原来的i位置后面插入一个和word2的j位置相同的字符使得
此时的word1的0i(这个i是执行了插入操作后新的i)和word2的0j匹配得上,
所以此时dp[i][j]=dp[i][j-1]+1(这个加1代表执行插入操作)
④由于题目所要求的是要最少的操作数:所以当word1[i] != word2[j] 时,
需要在这三个操作中选取一个最小的值赋格当前的dp[i][j]
def minDistance(self, word1, word2):
"""
:type word1: str
:type word2: str
:rtype: int
"""
dp = [[-1]*(len(word1)+1) for i in range(len(word2)+1)]
for i in range(len(word1)+1):
dp[0][i] = i
for j in range(len(word2)+1):
dp[j][0] = j
for i in range(1,len(word2)+1):
for j in range(1,len(word1)+1):
if word2[i-1] == word1[j-1]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = min(dp[i-1][j-1] +1,dp[i][j-1] +1,dp[i-1][j] +1 )
return dp[-1][-1]