算法之拓扑关系

目录

前言:

算法解析

Kahn算法 

DFS算法

总结:

参考资料


前言:

如何确定代码源文件的编译依赖关系?

我们知道,一个完整的项目往往会包含很多代码源文件。编译器在编译整个项目的时候,需要按照依赖关系,依次编译每个源文件。比如,A.cpp 依赖 B.cpp,那在编译的时候,编译器需要先编译 B.cpp,才能编译 A.cpp

编译器通过分析源文件或者程序员事先写好的编译配置文件(比如 Makefile 文件),来获取这种局部的依赖关系。那编译器又该如何通过源文件两两之间的局部依赖关系,确定一个全局的编译顺序呢?


算法解析

     这个问题的解决思路与这种数据结构的一个经典算法拓扑排序算法有关。那什么是拓扑排序呢?这个概念很好理解,我们先来看一个生活中的拓扑排序的例子。

      我们在穿衣服的时候都有一定的顺序,我们可以把这种顺序想成,衣服与衣服之间有一定的依赖关系。比如说,你必须先穿袜子才能穿鞋,先穿内裤才能穿秋裤。假设我们现在有八件衣服要穿,它们之间的两两依赖关系我们已经很清楚了,那如何安排一个穿衣序列,能够满足所有的两两之间的依赖关系?

  

 拓扑排序的原理非常简单,我们的重点应该放到拓扑排序的实现上面。

 算法是构建在具体的数据结构之上的。针对这个问题,我们先来看下,如何将问题背景抽象成具体的数据结构?

    我们可以把源文件与源文件之间的依赖关系,抽象成一个有向图。每个源文件对应图中的一个顶点,源文件之间的依赖关系就是顶点之间的边。

     如 a 先于 b 执行,也就是说 b 依赖于 a那么就在顶点 a 和顶点 b 之间,构建一条从 a 指向 b 的边。而且,这个图不仅要是有向图,还要是一个有向无环图,也就是不能存在像 a->b->c->a 这样的循环依赖关系。因为图中一旦出现环,拓扑排序就无法工作了。实际上,拓扑排序本身就是基于有向无环图的一个算法。

具体代码如下:


public class Graph {
  private int v; // 顶点的个数
  private LinkedList<Integer> adj[]; // 邻接表

  public Graph(int v) {
    this.v = v;
    adj = new LinkedList[v];
    for (int i=0; i<v; ++i) {
      adj[i] = new LinkedList<>();
    }
  }

  public void addEdge(int s, int t) { // s先于t,边s->t
    adj[s].add(t);
  }
}

    拓扑排序有两种实现方法,都不难理解。它们分别是 Kahn 算法和 DFS 深度优先搜索算法。我们依次来看下它们都是怎么工作的。

Kahn算法 

Kahn 算法实际上用的是贪心算法思想,思路非常简单、好懂。

定义数据结构的时候,如果 s 需要先于 t 执行,那就添加一条 s 指向 t 的边。所以,如果某个顶点入度为 0 也就表示,没有任何顶点必须先于这个顶点执行,那么这个顶点就可以执行了。

     我们先从图中,找出一个入度为 0 的顶点,将其输出到拓扑排序的结果序列中(对应代码中就是把它打印出来),并且把这个顶点从图中删除(也就是把这个顶点可达的顶点的入度都减 1)。我们循环执行上面的过程,直到所有的顶点都被输出。最后输出的序列,就是满足局部依赖关系的拓扑排序。

具体的代码实现如下:

 


public void topoSortByKahn() {
  int[] inDegree = new int[v]; // 统计每个顶点的入度
  for (int i = 0; i < v; ++i) {
    for (int j = 0; j < adj[i].size(); ++j) {
      int w = adj[i].get(j); // i->w
      inDegree[w]++;
    }
  }
  LinkedList<Integer> queue = new LinkedList<>();
  for (int i = 0; i < v; ++i) {
    if (inDegree[i] == 0) queue.add(i);
  }
  while (!queue.isEmpty()) {
    int i = queue.remove();
    System.out.print("->" + i);
    for (int j = 0; j < adj[i].size(); ++j) {
      int k = adj[i].get(j);
      inDegree[k]--;
      if (inDegree[k] == 0) queue.add(k);
    }
  }
}

DFS算法

       图上的深度优先搜索我们前面已经讲过了,实际上,拓扑排序也可以用深度优先搜索来实现。不过这里的名字要稍微改下,更加确切的说法应该是深度优先遍历,遍历图中的所有顶点,而非只是搜索一个顶点到另一个顶点的路径。

 具体的代码如下:


public void topoSortByDFS() {
  // 先构建逆邻接表,边s->t表示,s依赖于t,t先于s
  LinkedList<Integer> inverseAdj[] = new LinkedList[v];
  for (int i = 0; i < v; ++i) { // 申请空间
    inverseAdj[i] = new LinkedList<>();
  }
  for (int i = 0; i < v; ++i) { // 通过邻接表生成逆邻接表
    for (int j = 0; j < adj[i].size(); ++j) {
      int w = adj[i].get(j); // i->w
      inverseAdj[w].add(i); // w->i
    }
  }
  boolean[] visited = new boolean[v];
  for (int i = 0; i < v; ++i) { // 深度优先遍历图
    if (visited[i] == false) {
      visited[i] = true;
      dfs(i, inverseAdj, visited);
    }
  }
}

private void dfs(
    int vertex, LinkedList<Integer> inverseAdj[], boolean[] visited) {
  for (int i = 0; i < inverseAdj[vertex].size(); ++i) {
    int w = inverseAdj[vertex].get(i);
    if (visited[w] == true) continue;
    visited[w] = true;
    dfs(w, inverseAdj, visited);
  } // 先把vertex这个顶点可达的所有顶点都打印出来之后,再打印它自己
  System.out.print("->" + vertex);
}

      第一部分是通过邻接表构造逆邻接表。邻接表中,边 s->t 表示 s 先于 t 执行,也就是 t 要依赖 s。在逆邻接表中,边 s->t 表示 s 依赖于 ts 后于 t 执行。为什么这么转化呢?这个跟我们这个算法的实现思想有关。

     第二部分是这个算法的核心,也就是递归处理每个顶点。对于顶点 vertex 来说,我们先输出它可达的所有顶点,也就是说,先把它依赖的所有的顶点输出了,然后再输出自己。

总结:

    拓扑排序应用非常广泛,解决的问题的模型也非常一致。凡是需要通过局部顺序来推导全局顺序的,一般都能用拓扑排序来解决。除此之外,拓扑排序还能检测图中环的存在。对于 Kahn 算法来说,如果最后输出出来的顶点个数,少于图中顶点个数,图中还有入度不是 0 的顶点,那就说明,图中存在环。 

参考资料

本章内容来源于对王争大佬的《数据结构与算法之美》的专栏。

43 | 拓扑排序:如何确定代码源文件的编译依赖关系?-极客时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值