yolov3 map、recall、p-r曲线可视化超详细

本文详细介绍了如何使用Darknet进行YoloV3的检测验证,通过运行官方代码生成测试结果,接着利用reval_voc_py.py计算mAP值并绘制PR曲线。步骤包括修改配置文件、执行检测、下载评估脚本、计算mAP及绘制曲线,并针对可能出现的问题提供了解决方案。
摘要由CSDN通过智能技术生成

1 、运行darknet官方代码中的detector valid指令,生成对测试集的检测结果。
.\darknet detector valid <voc.data文件路径> <cfg文件路径> <weights文件路径> -out “”

其中voc.data和cfg文件就是你当时训练用的配置文件,weights文件就是你训练出来的结果,其中需要修改的是voc.data文件,其中应该是有五行的,其中第三行是valid就是需要验证测试集的路径。
2、执行完之后应该会在程序的当前目录生成一个results文件夹,里面存有检测结果,文件名为comp4_det_test_<你检测的类名>.txt,画风如下所示。
在这里插入图片描述
txt中数据格式为: 文件名 置信度 x y w h。
3、下载检测用脚本文件 reval_voc_py.py和voc_eval_py.py
https://download.csdn.net/download/qq_33350808/10731748
这个老哥提供的,需要积分哦,如果没积分可以联系我,我给你们发。1397728762@qq.com。记得点赞,感谢。

4、 使用reval_voc_py.py计算出mAP值并且生成pkl文件,命令行如下(这是我自己的命令行你们根据自己的修改即可):
python reval_voc_py3.py --voc_dir /extdisk/yolov3new/darknet/scripts/VOCdevkit --year 2019 --image_set test --classes /extdisk/yol

评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值