yolov3 tf2计算自己数据集的mAP Ap PR曲线

本文介绍了如何利用TensorFlow 2.x和YOLOv3模型计算VOC格式数据集的mAP(平均精度均值)和PR( Precision-Recall 曲线)。作者参照了几篇博客,详细记录了从准备images-optional、ground_truth和detection-results文件夹,到执行main.py生成结果的整个过程,包括xml转txt、运行YOLOv3测试脚本和处理结果txt等步骤。
摘要由CSDN通过智能技术生成

原文:
https://blog.csdn.net/weixin_42990953/article/details/105182238?utm_medium=distribute.pc_relevant_download.none-task-blog-2defaultsearchFromBaidudefault-16.test_version_3&depth_1-utm_source=distribute.pc_relevant_download.none-task-blog-2defaultsearchFromBaidudefault-16.test_version_

https://blog.csdn.net/weixin_41243159/article/details/103748428

小白参考了几位大佬的博客,记录一下防止忘了,然后自己进行了相应修改,实现计算VOC格式数据集测试集map,ap,pr,最后执行完mian.py文件后会生成每类的AP,PR曲线图。
如:在这里插入图片描述
在这里插入图片描述

文章目录
前言
MAP计算
1.下载源码
2. images-optional文件夹
3.ground_truth文件夹
3.1导入xml到ground_truth文件夹
3.2将上面xml文件转换成txt文件
4.detection-results文件夹
4.1制作result.txt

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值