_2LeetCode代码随想录算法训练营第二天C++数组 | 977.有序数组的平方、209.长度最小的子数组、59.螺旋矩阵II
LeetCode 题目列表:
- 977.有序数组的平方
- 209.长度最小的子数组
- 59.螺旋矩阵II
977.有序数组的平方
代码随想录地址:https://www.bilibili.com/video/BV1QB4y1D7ep
题目
给你一个按 非递减顺序 排序的整数数组 nums
,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]
提示:
- 1 <= nums.length <= 1 0 4 10^4 104
- - 1 0 4 10^4 104 <= nums[i] <= 1 0 4 10^4 104
nums
已按 非递减顺序 排序
进阶:
- 请你设计时间复杂度为
O(n)
的算法解决本问题
题目所述数组含有负数。
双指针的思路
双指针的思路:
最大元素一定是在两边,考虑用两个指针逐步向中间合拢,得到一个由大到小的数组,在更新数组时也由大索引到小索引更新。
代码
/*
* @lc app=leetcode.cn id=977 lang=cpp
*
* [977] 有序数组的平方
*/
// @lc code=start
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
vector<int> result(nums.size(), 0);//初始化结果数组
int index = nums.size() - 1;//初始化更新数组的index
for(int i = 0,j = nums.size() - 1; i <= j; )//双指针往中间夹击
{
int muti_i = nums[i]*nums[i];//此处是为了少算一次*法
int muti_j = nums[j]*nums[j];//此处是为了少算有一次*法
if(muti_i > muti_j)//如果i指向的元素的平方更大
{
result[index--] = muti_i;//更新结果数组和更新index
i++;//更新i
}
else//如果i和j指向的元素的平方相等或j指向的元素的平方更大
{
result[index--] = muti_j;//更新结果数组和更新index
j--;//更新j
}
}
return result;
}
};
// @lc code=end
犯的错误
将这一句
for(int i = 0,j = nums.size() - 1; i <= j; )//双指针往中间夹击
写成了
for(int i = 0, int j = nums.size() - 1; i <= j; )//双指针往中间夹击
属于是低级错误
209.长度最小的子数组
代码随想录地址:https://programmercarl.com/0209.%E9%95%BF%E5%BA%A6%E6%9C%80%E5%B0%8F%E7%9A%84%E5%AD%90%E6%95%B0%E7%BB%84.html
题目
给定一个含有 n
个正整数的数组和一个正整数 target
。
找出该数组中满足其和 ≥ target
的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr]
,并返回其长度**。**如果不存在符合条件的子数组,返回 0
。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
提示:
- 1 <= target <= 1 0 9 10^9 109
- 1 <= nums.length <= 1 0 5 10^5 105
- 1 <= nums[i] <= 1 0 5 10^5 105
进阶:
- 如果你已经实现
O(n)
时间复杂度的解法, 请尝试设计一个O(n log(n))
时间复杂度的解法。
暴力解法
使用两层嵌套for循环,第一层表示起始位置,第二层表示终止位置,遍历所有的情况,求得长度最小的子数组。
双指针的思路
滑动窗口的思想
只用一个for循环解决问题,那么for循环里面的索引是滑动窗口的起始位置还是终止位置呢?如果是起始位置,那么和暴力解法一样把所有的终止位置都遍历了一遍,所以是终止位置。
重点所在
那么如何决定起始位置呢?需要使用一个动态移动的策略确定。即当集合里面的所有元素和大于等于target时,就可以移动起始位置了。
代码
/*
* @lc app=leetcode.cn id=209 lang=cpp
*
* [209] 长度最小的子数组
*/
// @lc code=start
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int result = INT32_MAX;//首先将结果赋值为超大的值
int subLength = 0;//表示滑动窗口的大小
int i = 0;//表示滑动窗口的起始位置
int sum = 0;//记录滑动窗口元素和
for(int j = 0;j < nums.size();j++)
{
sum += nums[j];//滑动窗口后移一位,就将新的滑动窗口的终止位置的元素加到sum中
while(sum >= target)//当sum大于等于target时,就要更新起始位置了
{
subLength = j - i + 1;//求得当前滑动窗口的大小
result = subLength < result ? subLength : result;//与result比较,如果比result更小则更新result为subLength;否则不更新result。
sum -= nums[i++];//sum减掉滑动窗口起始位置的元素,更新i
}
}
return result < INT32_MAX ? result : 0;
}
};
// @lc code=end
时间复杂度
每个元素在滑动窗口进来操作一次,出去操作一次,每个元素都是被操作两次,所以时间复杂度是 2 × n 也就是O(n)。
问题
在for循环中,为什么不使用if而使用while呢?
如果target = 100
可能存在这样的滑动窗口:[1, 1, 1, 1, 1, 100]
需要求得最小的result。
59.螺旋矩阵II
代码随想录地址:https://programmercarl.com/0059.%E8%9E%BA%E6%97%8B%E7%9F%A9%E9%98%B5II.html
题目
给你一个正整数 n
,生成一个包含 1
到 n2
所有元素,且元素按顺时针顺序螺旋排列的 n x n
正方形矩阵 matrix
。
示例 1:
输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]
示例 2:
输入:n = 1
输出:[[1]]
提示:
1 <= n <= 20
错误思路
处理每条边的时候,规则不统一;导致需要处理很多边界条件,这样就很容易出错。
循环不变量
循环就是一圈一圈地处理,不变量就是每条边地处理规则一样。
采用左闭右开的规则:如上图所示,处理第一行时只处理1、2;处理第三列时只处理3、4;处理第三行时只处理5、6;处理第一列时只处理7、8;对于每一个循环皆如此,直到循环结束。
代码
/*
* @lc app=leetcode.cn id=59 lang=cpp
*
* [59] 螺旋矩阵 II
*/
// @lc code=start
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0));//使用vector定义一个二维数组
int startx = 0,starty = 0;//定义初始位置为(0,0)
int loop = n / 2;//表示执行几个圈,n为偶数时可行,但是n为基数时会忘掉中心位置的元素,这个就可以在最后做一个判断
int offset = 1;//执行一圈就将其加1,目的是计算边界
int data = 1;//记录数值1->2->3...->n
int i,j;//相当于是索引
while(loop--)
{
i = startx, j = starty;
//处理一个圈的上(左闭右开)
for(; j < n - offset; j++)
res[startx][j] = data++;
//处理一个圈的右(左闭右开) 此时j == n - offset
for(; i < n - offset; i++)
res[i][j] = data++;
//处理一个圈的下(左闭右开) 此时i == n - offset, j == n - offset
for(; j > starty; j--)
res[i][j] = data++;
//处理一个圈的左(左闭右开),此时i == n - offset, j == starty
for(; i > startx; i--)
res[i][j] = data++;
//处理完一圈之后,要移动初始位置和offset
startx++;
starty++;
offset++;
}
if(n % 2 == 1)//如果n是基数,则要添加以下中心位置的元素
{
int mid = n / 2;
res[mid][mid] = data;
}
return res;
}
};
// @lc code=end