_45LeetCode代码随想录算法训练营第四十五天-动态规划 | 300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组
题目列表
- 300.最长递增子序列
- 674.最长连续递增序列
- 718.最长重复子数组
300.最长递增子序列
代码随想录地址:https://programmercarl.com/0300.%E6%9C%80%E9%95%BF%E4%B8%8A%E5%8D%87%E5%AD%90%E5%BA%8F%E5%88%97.html
题目
给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
提示:
1 <= nums.length <= 2500
- - 1 0 4 10^4 104 <= nums[i] <= 1 0 4 10^4 104
进阶:
- 你能将算法的时间复杂度降低到
O(n log(n))
吗?
思路
动规五部曲:
- dp[i]的定义
dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度
必须是这样的,如果为序列nums[0-i]的最长递增子序列的长度的话,那么就无法推导递推公式,因为根据dp[i - 1]推导dp[i]的话,是加上当前数呢还是不加呢?是没法判断的。
- 状态转移方程
位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
- dp[i]的初始化
每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1,因为至少要包含自己
- 确定遍历顺序
dp[i] 是从0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历。
j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了。 所以默认习惯 从前向后遍历。
- 动态推导dp数组
输入:[0,1,0,3,2],dp数组的变化如下:
代码
时间复杂度:O( n 2 n^2 n2)
空间复杂度:n
/*
* @lc app=leetcode.cn id=300 lang=cpp
*
* [300] 最长递增子序列
*/
// @lc code=start
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
//定义和初始化dp数组
//dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度
vector<int> dp(nums.size(), 1);
//遍历
int maxNum = 1;
for(int i = 1; i < nums.size(); i++)
{
for(int j = 0; j < i; j++)
if(nums[i] > nums[j])
dp[i] = max(dp[i], dp[j] + 1);
if(maxNum < dp[i])//要统计所有dp[i]中的最大值,才是最长序列子长度
maxNum = dp[i];
}
return maxNum;
}
};
// @lc code=end
674.最长连续递增序列
代码随想录地址:https://programmercarl.com/0674.%E6%9C%80%E9%95%BF%E8%BF%9E%E7%BB%AD%E9%80%92%E5%A2%9E%E5%BA%8F%E5%88%97.html
题目
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l
和 r
(l < r
)确定,如果对于每个 l <= i < r
,都有 nums[i] < nums[i + 1]
,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]]
就是连续递增子序列。
示例 1:
输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
示例 2:
输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。
提示:
- 1 <= nums.length <= 1 0 4 10^4 104
- - 1 0 9 10^9 109 <= nums[i] <= 1 0 9 10^9 109
思路
动规五部曲:
- 确定dp数组(dp table)以及下标的含义
dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]。
- 确定递推公式
如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。
即:dp[i] = dp[i - 1] + 1;
- dp数组如何初始化
以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。
- 确定遍历顺序
从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。
- 动态推导dp数组
代码
贪心思路
- 时间复杂度O(n)
- 空间复杂度O(1)
/*
* @lc app=leetcode.cn id=674 lang=cpp
*
* [674] 最长连续递增序列
*/
// @lc code=start
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
int res = 1;
int num = 1;
for(int i = 1; i < nums.size(); i++)
{
//连续 num++
if(nums[i] > nums[i - 1])
num++;
else//不连续 num从初值开始
num = 1;
if(res < num)//找到最大的num
res = num;
}
return res;
}
};
// @lc code=end
动态规划思路
- 时间复杂度:O(n)
- 空间复杂度:O(n)
/*
* @lc app=leetcode.cn id=674 lang=cpp
*
* [674] 最长连续递增序列
*/
// @lc code=start
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
if(nums.size() <= 1)
return nums.size();
//定义和初始化dp数组
vector<int> dp(nums.size(), 1);
int res = 1;//记录最大值,也就是要返回的值
//遍历
for(int i = 1; i < nums.size(); i++)
{
if(nums[i] > nums[i - 1])
dp[i] = dp[i - 1] + 1;
if(dp[i] > res)
res = dp[i];
}
return res;
}
};
// @lc code=end
718.最长重复子数组
代码随想录地址:https://programmercarl.com/0718.%E6%9C%80%E9%95%BF%E9%87%8D%E5%A4%8D%E5%AD%90%E6%95%B0%E7%BB%84.html
题目
给两个整数数组 nums1
和 nums2
,返回 两个数组中 公共的 、长度最长的子数组的长度 。
示例 1:
输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。
示例 2:
输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5
提示:
1 <= nums1.length, nums2.length <= 1000
0 <= nums1[i], nums2[i] <= 100
思路
动态规划五部曲:
- 确定dp数组(dp table)以及下标的含义
dp[i] [j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i] [j]。
如果定义dp[i] [j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度,那么在初始化dp数组的时候会稍微麻烦一些。
- 确定递推公式
根据dp[i] [j]的定义,dp[i] [j]的状态只能由dp[i - 1] [j - 1]推导出来。
即当A[i - 1] 和B[j - 1]相等的时候,dp[i] [j] = dp[i - 1] [j - 1] + 1;
- dp数组如何初始化
根据dp[i] [j]的定义,dp[i] [0] 和dp[0] [j]是没有意义。但是为了推导递推公式,dp[i] [0] 和dp[0] [j]要初始化为0。
- 确定遍历顺序
外层for循环遍历A,内层for循环遍历B。反过来也行,不影响。
- 动态推导dp数组
草稿纸。
代码
动态规划二维数组
按 dp[i] [j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i] [j]。 定义dp数组。
- 时间复杂度:O(n × m),n 为A长度,m为B长度
- 空间复杂度:O(n × m)
/*
* @lc app=leetcode.cn id=718 lang=cpp
*
* [718] 最长重复子数组
*/
// @lc code=start
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
//dp数组定义及其初始化
vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
//记录最大结果
int res = 0;
//遍历
for(int i = 1; i <= nums1.size(); i++)
{
for(int j = 1; j <= nums2.size(); j++)
{
if(nums1[i - 1] == nums2[j - 1])
dp[i][j] = dp[i - 1][j - 1] + 1;
if(dp[i][j] > res)//保存最大结果
res = dp[i][j];
}
}
return res;
}
};
// @lc code=end
按 定义dp[i] [j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度 定义dp数组。
需要多一步初始化。
// 版本三
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
int result = 0;
// 要对第一行,第一列进行初始化
for (int i = 0; i < nums1.size(); i++) if (nums1[i] == nums2[0]) dp[i][0] = 1;
for (int j = 0; j < nums2.size(); j++) if (nums1[0] == nums2[j]) dp[0][j] = 1;
for (int i = 0; i < nums1.size(); i++) {
for (int j = 0; j < nums2.size(); j++) {
if (nums1[i] == nums2[j] && i > 0 && j > 0) { // 防止 i-1 出现负数
dp[i][j] = dp[i - 1][j - 1] + 1;
}
if (dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
};
动态规划滚动数组
- 时间复杂度:O(n × m),n 为A长度,m为B长度
- 空间复杂度:O(m)
/*
* @lc app=leetcode.cn id=718 lang=cpp
*
* [718] 最长重复子数组
*/
// @lc code=start
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
//dp数组定义及其初始化
//使用滚动数组
vector<int> dp(nums2.size() + 1, 0);
//记录最大结果
int res = 0;
//遍历
for(int i = 1; i <= nums1.size(); i++)
{
//此处需要逆序遍历了,为了在不更新上一次的结果的情况下更新当前结果
//类似于01背包的逆序
for(int j = nums2.size(); j >= 1; j--)
{
if(nums1[i - 1] == nums2[j - 1])
dp[j] = dp[j - 1] + 1;
else
dp[j] = 0;//不等的时候要将其置为0,因为二维数组的话全部元素都初始化为0了
if(dp[j] > res)//保存最大结果
res = dp[j];
}
}
return res;
}
};
// @lc code=end