_45LeetCode代码随想录算法训练营第四十五天-动态规划 | 300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组

_45LeetCode代码随想录算法训练营第四十五天-动态规划 | 300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组

题目列表

  • 300.最长递增子序列
  • 674.最长连续递增序列
  • 718.最长重复子数组

300.最长递增子序列

代码随想录地址:https://programmercarl.com/0300.%E6%9C%80%E9%95%BF%E4%B8%8A%E5%8D%87%E5%AD%90%E5%BA%8F%E5%88%97.html

题目

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • - 1 0 4 10^4 104 <= nums[i] <= 1 0 4 10^4 104

进阶:

  • 你能将算法的时间复杂度降低到 O(n log(n)) 吗?

思路

动规五部曲:

  1. dp[i]的定义

dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

必须是这样的,如果为序列nums[0-i]的最长递增子序列的长度的话,那么就无法推导递推公式,因为根据dp[i - 1]推导dp[i]的话,是加上当前数呢还是不加呢?是没法判断的。

  1. 状态转移方程

位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。

if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

  1. dp[i]的初始化

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1,因为至少要包含自己

  1. 确定遍历顺序

dp[i] 是从0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历。

j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了。 所以默认习惯 从前向后遍历。

  1. 动态推导dp数组

输入:[0,1,0,3,2],dp数组的变化如下:
在这里插入图片描述

代码

时间复杂度:O( n 2 n^2 n2)

空间复杂度:n

/*
 * @lc app=leetcode.cn id=300 lang=cpp
 *
 * [300] 最长递增子序列
 */

// @lc code=start
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        //定义和初始化dp数组
        //dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度
        vector<int> dp(nums.size(), 1);
        //遍历
        int maxNum = 1;
        for(int i = 1; i < nums.size(); i++)
        {
            for(int j = 0; j < i; j++)
                if(nums[i] > nums[j])
                    dp[i] = max(dp[i], dp[j] + 1); 
            if(maxNum < dp[i])//要统计所有dp[i]中的最大值,才是最长序列子长度
                maxNum = dp[i];
        }                        
        return maxNum;
    }
};
// @lc code=end

674.最长连续递增序列

代码随想录地址:https://programmercarl.com/0674.%E6%9C%80%E9%95%BF%E8%BF%9E%E7%BB%AD%E9%80%92%E5%A2%9E%E5%BA%8F%E5%88%97.html

题目

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 lrl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。 

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。

提示:

  • 1 <= nums.length <= 1 0 4 10^4 104
  • - 1 0 9 10^9 109 <= nums[i] <= 1 0 9 10^9 109

思路

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]

  1. 确定递推公式

如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

即:dp[i] = dp[i - 1] + 1;

  1. dp数组如何初始化

以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

  1. 确定遍历顺序

从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

  1. 动态推导dp数组

代码

贪心思路

  • 时间复杂度O(n)
  • 空间复杂度O(1)
/*
 * @lc app=leetcode.cn id=674 lang=cpp
 *
 * [674] 最长连续递增序列
 */

// @lc code=start
class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        int res = 1;
        int num = 1;
        for(int i = 1; i < nums.size(); i++)
        {
            //连续 num++
            if(nums[i] > nums[i - 1])
                num++;
            else//不连续 num从初值开始
                num = 1;
            if(res < num)//找到最大的num
                res = num;
        }
        return res;
    }
};
// @lc code=end

动态规划思路

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)
/*
 * @lc app=leetcode.cn id=674 lang=cpp
 *
 * [674] 最长连续递增序列
 */

// @lc code=start
class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        if(nums.size() <= 1)
            return nums.size();
        //定义和初始化dp数组
        vector<int> dp(nums.size(), 1);
        int res = 1;//记录最大值,也就是要返回的值
        //遍历
        for(int i = 1; i < nums.size(); i++)
        {
            if(nums[i] > nums[i - 1])
                dp[i] = dp[i - 1] + 1;
            if(dp[i] > res)
                res = dp[i];
        }
        return res;
    }
};
// @lc code=end

718.最长重复子数组

代码随想录地址:https://programmercarl.com/0718.%E6%9C%80%E9%95%BF%E9%87%8D%E5%A4%8D%E5%AD%90%E6%95%B0%E7%BB%84.html

题目

给两个整数数组 nums1nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度

示例 1:

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。

示例 2:

输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5

提示:

  • 1 <= nums1.length, nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 100

思路

动态规划五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i] [j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i] [j]。

如果定义dp[i] [j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度,那么在初始化dp数组的时候会稍微麻烦一些。

  1. 确定递推公式

根据dp[i] [j]的定义,dp[i] [j]的状态只能由dp[i - 1] [j - 1]推导出来。

即当A[i - 1] 和B[j - 1]相等的时候,dp[i] [j] = dp[i - 1] [j - 1] + 1;

  1. dp数组如何初始化

根据dp[i] [j]的定义,dp[i] [0] 和dp[0] [j]是没有意义。但是为了推导递推公式,dp[i] [0] 和dp[0] [j]要初始化为0。

  1. 确定遍历顺序

外层for循环遍历A,内层for循环遍历B。反过来也行,不影响。

  1. 动态推导dp数组

草稿纸。

代码

动态规划二维数组

按 dp[i] [j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i] [j]。 定义dp数组。

  • 时间复杂度:O(n × m),n 为A长度,m为B长度
  • 空间复杂度:O(n × m)
/*
 * @lc app=leetcode.cn id=718 lang=cpp
 *
 * [718] 最长重复子数组
 */

// @lc code=start
class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        //dp数组定义及其初始化
        vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
        //记录最大结果
        int res = 0;
        //遍历
        for(int i = 1; i <= nums1.size(); i++)
        {
            for(int j = 1; j <= nums2.size(); j++)
            {
                if(nums1[i - 1] == nums2[j - 1])
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                if(dp[i][j] > res)//保存最大结果
                    res = dp[i][j];
            }
        }
        return res;
    }
};
// @lc code=end

按 定义dp[i] [j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度 定义dp数组。

需要多一步初始化。

// 版本三
class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
        int result = 0;

        // 要对第一行,第一列进行初始化
        for (int i = 0; i < nums1.size(); i++) if (nums1[i] == nums2[0]) dp[i][0] = 1;
        for (int j = 0; j < nums2.size(); j++) if (nums1[0] == nums2[j]) dp[0][j] = 1;

        for (int i = 0; i < nums1.size(); i++) {
            for (int j = 0; j < nums2.size(); j++) {
                if (nums1[i] == nums2[j] && i > 0 && j > 0) { // 防止 i-1 出现负数
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }
                if (dp[i][j] > result) result = dp[i][j];
            }
        }
        return result;
    }
};

动态规划滚动数组

  • 时间复杂度:O(n × m),n 为A长度,m为B长度
  • 空间复杂度:O(m)
/*
 * @lc app=leetcode.cn id=718 lang=cpp
 *
 * [718] 最长重复子数组
 */

// @lc code=start
class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        //dp数组定义及其初始化
        //使用滚动数组
        vector<int> dp(nums2.size() + 1, 0);
        //记录最大结果
        int res = 0;
        //遍历        
        for(int i = 1; i <= nums1.size(); i++)
        {            
            //此处需要逆序遍历了,为了在不更新上一次的结果的情况下更新当前结果
            //类似于01背包的逆序
            for(int j = nums2.size(); j >= 1; j--)
            {
                if(nums1[i - 1] == nums2[j - 1])
                    dp[j] = dp[j - 1] + 1;
                else
                    dp[j] = 0;//不等的时候要将其置为0,因为二维数组的话全部元素都初始化为0了
                if(dp[j] > res)//保存最大结果
                    res = dp[j];
            }
        }
        return res;
    }
};
// @lc code=end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jasmine-Lily

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值