数据结构 第五章 数组和广义表

本文探讨了稀疏矩阵的转置方法,包括普通转置和快速转置,其中快速转置利用num和cpot数组提高效率。同时,文章提及了稀疏矩阵相乘时可能遇到的问题以及代码优化策略,如使用冒泡排序对结构体进行排序,并结合sort函数的cmp比较函数。
摘要由CSDN通过智能技术生成

稀疏矩阵转置:

普通转置:逐列遍历M

void TransposeSMatrix(Matrix M, Matrix& T) {
   
	T.m = M.n; T.n = M.m; T.t = M.t;
	if (T.t) {
   
		int q = 1;
		for (int col = 1; col <= M.n; col++) 
			for(int p=1;p<=M.t;p++)
				if (M.data[p].j == col) //遍历M每一列
					T.data[q++] = {
    M.data[p].j,  M.data[p].i, M.data[p].e };
	}
}

快速转置:num记录M每列非零元个数,cpot记录每列第一个元素在T.data中的位置

void FastTransposeSMatrix(Matrix M, Matrix &T) {
   
	T.m = M.n; T.n = M.m; T.t = M.t;	
	int t, col, p, q;
	if (T.t) {
   
		for (t = 1; t <= M.t; t++)//num记录M每列非零元个数
			num[M.data[t].j]++;
		for (col = 2; col <= M.n; col++)//cpot记录每列第一个元素在T.data中的位置
			cpot[col] = cpot[col - 1] + num[col - 1];
		for (p = 1; p <= M.t; p++) {
   
			col = M.data[p].j; q = cpot[col];
			T.data[q] = {
    M.data[p].j, M.data[p].i, M.data[p].e };
			cpot[col]++;//cpot[col]为col列下一个元素的位置
		}				
	}
}

稀疏矩阵相乘: 辅设cpot数组。缺点:cpot数组大小有限,会爆

void get_cpot(Matrix &M, Matrix &N) {
   //得到M,N的cpot
	int t, col;
	for (t = 1; t <= M.t; t++)num[M.data[t].i]++;
	for (col = 1; col <= M.m; col++)M.cpot[col] = M.cpot[col - 1] + num[col - 1];
	memset(num, 0, sizeof(num));
	for (t = 1; t <= N.t; t++)num[N.data[t].i]++;
	for (col = 1; col <= N.m; col++)N.cpot[col] = N.cpot[col - 1] + num[col - 1];
}
void MultSMatrix(Matrix M, Matrix N, Matrix& Q) {
   
	if (M.n != N.m) return;
	Q.m = M.m; Q.n = N.n; Q.t = 0;
	get_cpot(M, N);
	int tp, br
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值