洛谷 P2241 统计方形(数据加强版)

博客介绍了如何统计不同大小的正方形数量,包括一个数据加强版的问题。首先,解释了当n小于m时,边长为n的正方形个数的计算公式:i*(n-m+i),然后给出了所有正方形总数的求和表达式。接着,计算了矩形的数量,通过n行的横边和m列的竖边的组合数减去正方形的数量得到长方形的数量。
摘要由CSDN通过智能技术生成

在这里插入图片描述
思路:假设n<m,边长为n的正方形个数为i(n-m+i)*
总的正方形数为:sigma [i(n-m+i)] (i=1,2……min{n,m})*
矩形个数为:n行有n+1条横边,m列有m+1条竖边,从横边和竖边中各选两条构成矩形,组合数Cn+1,2*Cm+1,2。长方形数=矩形数-正方形数

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
# 
洛谷 P1681 最大正方形II 是一个动态规划问题,要求给定一个由 '0' 和 '1' 组成的矩阵,找出其中最大的正方形,并输出其边。 以下是一个 C++ 编写的解答示例: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int maximalSquare(vector<vector<char>>& matrix) { int rows = matrix.size(); if (rows == 0) return 0; int cols = matrix[0].size(); vector<vector<int>> dp(rows + 1, vector<int>(cols + 1, 0)); int maxSide = 0; for (int i = 1; i <= rows; i++) { for (int j = 1; j <= cols; j++) { if (matrix[i-1][j-1] == '1') { dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1; maxSide = max(maxSide, dp[i][j]); } } } return maxSide * maxSide; } int main() { int n, m; cin >> n >> m; vector<vector<char>> matrix(n, vector<char>(m)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cin >> matrix[i][j]; } } cout << maximalSquare(matrix) << endl; return 0; } ``` 在上述代码中,我们首先定义了一个名为 `maximalSquare` 的函,该函接受一个二维字符矩阵 `matrix` 作为参,返回最大正方形的边。 在 `main` 函中,我们首先从标准输入读取矩阵的行和列,并创建一个大小为 `n x m` 的二维字符矩阵。然后,我们按行读取矩阵的数据,并调用 `maximalSquare` 函进行求解。最后,输出最大正方形的边。 在动态规划的解法中,我们使用一个二维组 `dp` 来记录以当前位置为右下角的最大正方形的边。遍历矩阵中的每个元素,如果当前元素为 '1',则根据其左方、上方和左上方的最大正方形计算出当前位置的最大正方形,并更新 `dp` 组和最大边变量。 请注意,以上代码仅为示例,可能需要根据具体题目要求进行适当修改。同时,为了简化示例,未进行输入验证,请确保输入的矩阵符合题目要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值