数论四大定理

数论四大定理

数论中表示同余的符号为 “ ≡ ”
给定一个正整数n,如果两个整数a和b满足a-b能被n整除
即 ( a − b ) m o d n = 0 , a m o d n = b 即(a-b) mod n = 0,a mod n = b (ab)modn=0amodn=b
那么就称整数a与b对模n同余,记作 a ≡ b ( m o d n ) a ≡ b ( mod n) ab(modn)
同余方程是一个数学方程式,该方程式的内容为:对于一组整数Z,Z里的每一个数都除以同一个数m,得到的余数可以为0,1,2,…m-1,共m种,我们就以余数的大小作为标准将Z分为m类,每一类都有相同的余数

  • 威尔逊定理

    p p p可整除 ( p − 1 ) ! + 1 (p-1)!+1 (p1)!+1 p p p为质数的充要条件
    即如果p是素数,则 ( p − 1 ) ! ≡ − 1 ( m o d p ) (p−1)! ≡ −1 ( mod p) (p1)!1(modp)

    如果 p p p不是素数,
    p = 4 p=4 p=4时,显然 ( p − 1 ) ! = 6 , 6 ≡ 2 ( m o d p ) (p-1)! = 6,6 ≡ 2(mod p) p1)!=662(modp)
    p > 4 p>4 p>4时,若p不是完全平方数,则存在两个不等的因数 a , b a,b ab使得 a b = p ab=p ab=p
    ( p − 1 ) ! ≡ n a b ≡ 0 ( m o d p ) ; (p-1)! ≡ nab ≡ 0(mod p); (p1)!nab0(modp);
    例 如 p = 8 , ( p − 1 ) ! = 1 × 2 × 3 × 4 × 5 × 6 × 7 = ( 2 × 4 ) × 1 × 3 × 5 × 6 × 7 例如p=8,(p-1)! = 1×2×3×4×5×6×7 = (2×4)×1×3×5×6×7 p=8(p1)!=1×2×3×4×5×6×7=(2×4)×1×3×5×6×7 ( p − 1 ) ! 能 被 p 整 除 (p-1)! 能被p整除 (p1)!p
    若 p 是 完 全 平 方 数 即 p = k 2 , 因 为 p &gt; 4 , 所 以 k &gt; 2 , k , 2 k &lt; p , 若p是完全平方数即p=k^2,因为p&gt;4,所以k&gt;2,k,2k&lt;p, pp=k2p>4,k>2k,2k<p
    ( p − 1 ) ! ≡ n ( k ∗ 2 k ) ≡ n × k 2 ≡ 0 ( m o d p ) (p-1)! ≡ n(k*2k) ≡ n×k^2 ≡ 0 (mod p) (p1)!n(k2k)n×k20(modp)
    例 如 p = 9 , ( p − 1 ) ! = 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 = ( 3 × 6 ) × 1 × 2 × 4 × 5 × 7 × 8 = ( 2 × 3 × 3 ) × 1 × 2 × 4 × 5 × 7 × 8 例如p=9,(p-1)! = 1×2×3×4×5×6×7×8×9 = (3×6)×1×2×4×5×7×8 = (2×3×3)×1×2×4×5×7×8 p=9(p1)!=1×2×3×4×5×6×7×8×9=(3×6)×1×2×4×5×7×8=(2×3×3)×1×2×4×5×7×8
    如果p是素数,
    取集合 A={1,2,3,…p -1},则A 构成模p乘法的缩系
    即任意a∈A ,存在不同的b∈A,使得:( a×b ) ≡ 1 ( mod p )
    A中的元素不一定恰好两两配对,若 x 2 ≡ 1 ( m o d p ) , x ≡ 1 ( m o d p ) 或 x ≡ p − 1 ( m o d p ) x^2 ≡ 1 ( mod p ),x ≡ 1 ( mod p ) 或 x ≡ p - 1 ( mod p ) x21(modp)x1(modp)xp1(modp)
    其余两两配对;故而 ( p − 1 ) ! ≡ 1 ﹡ ( p − 1 ) ≡ − 1 ( m o d p ) ( p - 1 )! ≡ 1﹡( p -1 ) ≡ -1 ( mod p ) (p1)!1(p1)1(modp)
    例 如 p = 7 , ( p − 1 ) ! = 1 × 2 × 3 × 4 × 5 × 6 = 1 × ( 2 × 3 ) × ( 4 × 5 ) × 6 例如p=7,(p-1)! = 1×2×3×4×5×6 = 1×(2×3)×(4×5)×6 p=7(p1)!=1×2×3×4×5×6=1×2×3×4×5×6

  • 欧拉定理

    n n n , a a a为正整数,且 n n n , a a a 互质,即 g c d ( a , n ) = 1 gcd(a,n) = 1 gcd(a,n)=1,则 a φ ( n ) ≡ 1 ( m o d n ) a^φ(n) ≡ 1 (mod n) aφ(n)1(modn)
    将 1 到 n 中 与 n 互 质 的 数 按 顺 序 排 布 : x 1 , x 2 … … x φ ( n ) ( 显 然 , 共 有 φ ( n ) 个 数 ) 将1到n中与n互质的数按顺序排布:x_1, x_2……x_{φ(n)} (显然,共有φ(n)个数) 1nnx1,x2xφ(n)φ(n)
    m 1 = a ∗ x 1 ; m 2 = a ∗ x 2 ; m 3 = a ∗ x 3 … … m φ ( n ) = a ∗ x φ ( n ) m_1 = a*x_1; m_2 = a*x_2; m_3 = a*x_3……m_φ(n) = a*x_{φ(n)} m1=ax1;m2=ax2;m3=ax3mφ(n)=axφ(n)
    这些数中的任意两个都不模 n n n同余
    若 m a , m b 模 n 同 余 , 可 得 m a − m b = n ∗ k , 即 x a − x b = n ∗ a ∗ k , x a − x b ≡ 0 ( m o d n ) 若 m_a , m_b 模n 同余,可得 ma - mb = n*k,即 xa - xb = n*a*k,xa−xb ≡ 0 (modn) ma,mbnmamb=nkxaxb=nakxaxb0(modn)
    由 于 x a , x b 与 n 互 质 , 且 x a ̸ = x b 由于x_a, x_b与n互质,且 x_a \not= x_b xa,xbnxa̸=xb
    所 以 x a − x b ≡ 0 ( m o d n ) 不 成 立 , 这 些 数 中 的 任 意 两 个 都 不 模 n 同 余 所以x_a−x_b ≡ 0 (modn)不成立,这些数中的任意两个都不模n同余 xaxb0(modn)n
    这些数除 n n n的余数都与 n n n互质
    因 为 a 与 n 互 质 , x i 与 n 互 质 , m i = a ∗ x i , 所 以 可 得 m i 与 n 互 质 因为a与n互质,x_i与n互质,m_i = a * x_i,所以可得m_i与n互质 anxinmi=aximin
    m 1 ∗ m 2 ∗ . . . ∗ m φ ( n ) ≡ x 1 ∗ x 2 ∗ … ∗ x φ ( n ) ( m o d n ) m_1 * m_2 * ... * m_{φ(n)} ≡ x_1 * x_2 * … * x_{φ(n)} ( mod n ) m1m2...mφ(n)x1x2xφ(n)(modn)
    a ∗ x 1 ∗ a ∗ x 2 ∗ … ∗ a ∗ x φ ( n ) ≡ x 1 ∗ x 2 ∗ … ∗ x φ ( n ) ( m o d n ) a* x_1 * a * x_2 * … * a * x_{φ(n)} ≡ x_1 * x_2 * … * x_{φ(n)} ( mod n ) ax1ax2axφ(n)x1x2xφ(n)(modn)
    a φ ( n ) ∗ x 1 ∗ x 2 ∗ … ∗ x φ ( n ) ≡ x 1 ∗ x 2 ∗ … ∗ x φ ( n ) ( m o d n ) a^φ(n) * x_1 * x_2 * … * x_{φ(n)} ≡ x_1 * x_2 * … * x_{φ(n)} ( mod n ) aφ(n)x1x2xφ(n)x1x2xφ(n)(modn)
    ( a φ ( n ) − 1 ) ∗ x 1 ∗ x 2 ∗ … ∗ x φ ( n ) ≡ 0 ( m o d n ) (a^{φ(n)}-1) * x_1 * x_2 * … * x_{φ(n)} ≡ 0 ( mod n ) (aφ(n)1)x1x2xφ(n)0(modn)
    a φ ( n ) ≡ 1 ( m o d n ) a^{φ(n)} ≡ 1 ( mod n ) aφ(n)1(modn)

  • 孙子定理(中国剩余定理)

    { x ≡ a 1 m o d ( m 1 ) x ≡ a 2 m o d ( m 2 ) . . . x ≡ a n m o d ( m n ) \begin{cases} x ≡ a_1 mod (m_1) \\ x ≡ a_2 mod (m_2)\\ .\\ .\\ .\\ x ≡ a_n mod (m_n)\\ \end{cases} xa1mod(m1)xa2mod(m2)...xanmod(mn)

    假设整数 m 1 , m 2 , . . . , m n m_1,m_2, ... ,m_n m1,m2,...,mn两两互质,则对任意的整数 a 1 , a 2 , . . . , a n a_1,a_2, ... ,a_n a1,a2,...,an方程组有解,并且通 解可以用如下方式构造得到:
    M M M m 1 , m 2 , . . . , m n m_1,m_2, ... ,m_n m1,m2,...,mn的乘积, M i M_i Mi是除了 m i m_i mi以外 n − 1 n-1 n1个数的乘积
    t i = M i − 1 t_i=M_i^{-1} ti=Mi1 M i M_i Mi m i m_i mi的数论倒数, M i t i ≡ 1 m o d ( m i ) M_it_i ≡1 mod (m_i) Miti1mod(mi)
    方程组的通解为 x = k M + ∑ i = 1 n a i t i M i x=kM+\sum_{i=1}^na_it_iM_i x=kM+i=1naitiMi

  • 费马小定理

    假如 p p p是质数,且 a a a p p p互质,则 a ( p − 1 ) ≡ 1 a^{(p-1)} ≡1 a(p1)1 a p ≡ a ( m o d p ) a^p ≡a(mod p) apa(modp)
    因为 p p p是质数,所以 φ ( p ) = p − 1 φ( p ) =p-1 φ(p)=p1,若 a a a p p p互质,由欧拉定理可得 a ( p − 1 ) ≡ 1 ( m o d p ) a^{(p-1)} ≡1(mod p) a(p1)1(modp)
    a p ≡ a ( m o d p ) a^p ≡a(mod p) apa(modp)

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值