峰度和偏度的计算方法&偏度的处理

pandas的dataframe

train_data['base_FVC'].skew()
train_data['base_FVC'].kurt()

scipy

from scipy import stats 
#x为列表
stats.skew(x)
stats.kurtosis(x)

偏度的处理方法

对数变换

xx = np.log1p(x)    #log1p = log(x+1)

平方根变换
反正弦变换
y = sin(x)
倒数变换
以上几种方法各有各自的适用之处,都试试看。对数变换用的应该是比较多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值