贝叶斯公式和极大似然估计详解

本文深入解析贝叶斯决策和极大似然估计。通过实例解释了贝叶斯公式在性别预测问题中的应用,介绍了极大似然估计的基本思想和前提条件,并详细阐述了如何求解极大似然估计的数学过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、贝叶斯决策

首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:
在这里插入图片描述
在这里插入图片描述
我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?

从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。
在这里插入图片描述
在这里插入图片描述

二、极大似然估计的引出

在这里插入图片描述
上面说到,参数估计问题只是实际问题求解过程中的一种简化方法(由于直接估计类条件概率密度函数很困难)。所以能够使用极大似然估计方法的样本必须需要满足一些前提假设。

重要前提:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量 ,且有充分的训练样本

三、极大似然估计

极大似然估计的原理,用一张图片来说明,如下图所示:
在这里插入图片描述
总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。

原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ。记已知的样本集为:
在这里插入图片描述
在这里插入图片描述

四、极大似然函数的求解

在这里插入图片描述

  1. 未知参数只有一个(θ为标量)
    在似然函数满足连续、可微的正则条件下,极大似然估计量是下面微分方程的解:
    在这里插入图片描述
    2.未知参数有多个(θ为向量)

    则θ可表示为具有S个分量的未知向量:
    在这里插入图片描述
    记梯度算子:
    在这里插入图片描述
    若似然函数满足连续可导的条件,则最大似然估计量就是如下方程的解。
    在这里插入图片描述
    方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值