贝叶斯公式和极大似然估计详解

本文深入解析贝叶斯决策和极大似然估计。通过实例解释了贝叶斯公式在性别预测问题中的应用,介绍了极大似然估计的基本思想和前提条件,并详细阐述了如何求解极大似然估计的数学过程。
摘要由CSDN通过智能技术生成

一、贝叶斯决策

首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:
在这里插入图片描述
在这里插入图片描述
我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?

从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。
在这里插入图片描述
在这里插入图片描述

二、极大似然估计的引出

在这里插入图片描述
上面说到,参数估计问题只是实际问题求解过程中的一种简化方法(由于直接估计类条件概率密度函数很困难)。所以能够使用极大似然估计方法的样本必须需要满足一些前提假设。

重要前提:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量 ,且有充分的训练样本

三、极大似然估计

极大似然估计的原理,用一张图片来说明,如下图所示:
在这里插入图片描述
总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。

原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ。记已知的样本集为:
在这里插入图片描述
在这里插入图片描述

四、极大似然函数的求解

在这里插入图片描述

  1. 未知参数只有一个(θ为标量)
    在似然函数满足连续、可微的正则条件下,极大似然估计量是下面微分方程的解:
    在这里插入图片描述
    2.未知参数有多个(θ为向量)

    则θ可表示为具有S个分量的未知向量:
    在这里插入图片描述
    记梯度算子:
    在这里插入图片描述
    若似然函数满足连续可导的条件,则最大似然估计量就是如下方程的解。
    在这里插入图片描述
    方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。

贝叶斯最大似然估计原理是建立在极大似然估计原理的基础上的。最大似然估计的目的是通过已知的样本结果,推断出最有可能导致这样结果的参数值。而贝叶斯最大似然估计则引入了先验概率和条件概率的概念。通过先验概率和条件概率,可以在模型已定、参数未知的情况下,根据观察数据来评估模型参数。贝叶斯最大似然估计的过程是先求得先验概率和条件概率,然后利用极大似然估计的方法来计算参数值,使得样本出现的概率为最大。因此,贝叶斯最大似然估计原理是通过使用频率来计算先验概率和条件概率,从而进行参数估计的一种方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [贝叶斯公式极大似然估计详解](https://blog.csdn.net/nanhuaibeian/article/details/102622223)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [朴素贝叶斯中的极大似然估计](https://blog.csdn.net/fanwu72/article/details/115339367)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值