题目描述
在一个划分成网格的操场上, n个士兵散乱地站在网格点上。 网格点由整数坐标(x,y)表示。士兵们可以沿网格边上、 下、 左、 右移动一步, 但在同一时刻任一网格点上只能有一名士兵。按照军官的命令,士兵们要整齐地列成一个水平队列,即排列成(x,y),(x+1,y),…,(x+n-1,y)。如何选择 x 和 y的值才能使士兵们以最少的总移动步数排成一列。 计算使所有士兵排成一行需要的最少移动步数。
输入
多组测试用例。
对于每一组测试用例,第1行是士兵数 n, 1≤n≤10000。 接下来 n行是士兵的初始位置, 每行有2个整数 x和 y,-10000≤x, y≤10000。
输出
数据的输出为一行, 表示士兵排成一行需要的最少移动步数。
样例输入
5
1 2
2 2
1 3
3 -2
3 3
样例输出
8
思路引用自:cqyz_holiday的博客 【排序专训】练习题
士兵站队(中位数应用) 解题报告解题思路:根据题意,要求所有士兵的最小移动步数,首先要找出他们需站成的水平队列的第一个坐标(x,y)。求该点的纵坐标y很容易,只需将所有士兵的坐标按纵坐标由小到大排序,他们纵坐标的中位数即为所求点的纵坐标y。然而要求该点的横坐标x,就需仔细思考,我们可以知道要使所有士兵的移动步数最小,那么每个士兵都应该移动到离自己最近的队列位置,但又不能插队,所以第一个士兵应该移动进队列的第一个位置,第二个士兵应该移动进队列的第二个位置……设每个士兵的横坐标按由小到大排序后为X0,X1,X2,……所以,我们可以得出所有士兵在x方向的移动步数为|X0-x|+|X1-(x+1)|+…+|Xn-1-(x+n-1)|,将该式子变形可得|X0-x|+|(X1-1)-x|+…+|(Xn-1-(n-1))-x|,可以发现,要使该式子最小,则x为X0,X1-1,X2-2,…,Xn-1-(n-1)的中位数。由此就可以找出水平队列的第一个坐标(x,y),然后根据第一个士兵移动进队列的第一个位置,第二个士兵移动进队列的第二个位置……计算出移动步数即为最小移动步数。
#include