【计算广告】feed流

本文介绍了Feed流的基本概念,将其比喻为不断给用户提供内容的饲料,并详细阐述了两种主要的Feed流模式:推模式和拉模式。推模式下,用户动态直接推送给粉丝,可能导致大数据负荷;而拉模式则在用户请求时获取关注者动态,可能带来大量数据查询成本。这两种模式各有优劣,都在信息传递中扮演重要角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. feed流概念

feed流即持续更新并呈现给用户内容的信息流

feed直接翻译是饲料的意思,其实是把用户都比喻成爱吃东西得某种动物,不断的给他喂食,满足他的需求

Feed是一种信息格式,平台通过它将资讯传递给用户。Feed是信息聚合的最小单元,每一条状态或者消息都是Feed,比如朋友圈中的一个动态就是一个Feed,微博中的一条微博就是一个Feed。

Feed流即持续更新并呈现给用户内容的信息流。每个人的朋友圈,微博关注页,头条新闻等等都是一个Feed流。

2. Feed 流的主要模式

2.1 推模式

每当用户发帖,对所有粉丝推送一条该用户的动态消息记录。需要考虑的是如果一个粉丝量级非常大的用户(大V),发布一条动态那么需要在每个粉丝页推送一条动态,多个大V级别用户同时发帖对数据的存储负荷是非常大的。

2.2 拉模式

每当请求好友动态,拉取用户所有关注者的最近动态,然后汇总排序。如果用户同时关注非常多的用户,那么查询这类型的用户的关注列表也是很大的数据成本。

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

InceptionZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值