最近因为项目需求,需要用到C++/Python混合编程,今天无意间发现了scipy的一个远古模块weave也可以在python中嵌入C语言的库,就鼓捣了一下(我真闲o(╥﹏╥)o)
先提醒一下大家,在2021年2月18日的SciPy 0.15.0 Release Notes中, weave模块已经被弃用,它是唯一一个没有被移植到Python 3的模块。并且不建议在新代码中使用,官方建议使用Cython替代他。
Weave只能在python2环境中使用。
weave简介
Python作为动态语言其功能虽然强大,但是在数值计算方面有一个最大的缺点:速度不够快。在Python级别的循环和计算的速度只有C语言程序的百分之一。因此才有了NumPy, SciPy这样的函数库,将高度优化的C、Fortran的函数库进行包装,以供Python程序调用。如果这些高度优化的函数库无法实现我们的算法,必须从头开始写循环、计算的话,那么用Python来做显然是不合适的。因此SciPy提供了快速调用C++语言程序的方法-- Weave。
安装
为了支持现有的代码,scipy.weave已单独打包:https://github.com/scipy/weave。它是一个纯Python包,可以很容易地用pip安装。
安装:
pip install weave
参考:https://docs.scipy.org/doc/scipy/reference/release.0.15.0.html
测试
# -*- coding: utf-8 -*-
import weave
import numpy as np
import time
def my_sum(a):
n=int(len(a))
code="""
int i;
double counter;
counter =0;
for(i=0;i<n;i++){
counter=counter+a(i);
}
return_val=counter;
"""
err=weave.inline(
code,['a','n'],
type_converters=weave.converters.blitz,
compiler="gcc"
)
return err
a = np.arange(0, 10000000, 1.0)
# 先调用一次my_sum,weave会自动对C语言进行编译,此后直接运行编译之后的代码
my_sum(a)
start = time.clock()
for i in xrange(100):
my_sum(a) # 直接运行编译之后的代码
print "my_sum:", (time.clock() - start) / 100.0
start = time.clock()
for i in xrange(100):
np.sum( a ) # numpy中的sum,其实现也是C语言级别
print "np.sum:", (time.clock() - start) / 100.0
start = time.clock()
print sum(a) # Python内部函数sum通过数组a的迭代接口访问其每个元素,因此速度很慢
print "sum:", time.clock() - start
运行结果:
my_sum: 0.0294527349146
np.sum: 0.0527649547638
sum: 9.11022322669
可以看到用Weave编译的C语言程序比numpy自带的sum函数还要快。而Python的内部函数sum使用数组的迭代器接口进行运算,因此速度是Python语言级别的,只有Weave版本的1/300。
weave.inline函数的第一个参数为需要执行的C++语言代码,第二个参数是一个列表,它告诉weave要把Python中的两个变量a和n传递给C++程序,注意我们用字符串表示变量名。converters.blitz是一个类型转换器,将numpy的数组类型转换为C++的blitz类。C++程序中的变量a不是一个数组,而是blitz类的实例,因此它使用a(i)获得其各个元素的值,而不是用a[i]。最后我们通过compiler参数告诉weave要采用gcc为C++编译器。如果你安装的是python(x,y)的话,gcc(mingw32)也一起安装好了,否则你可能需要手工安装gcc编译器或者微软的Visual C++。
参考:https://docs.huihoo.com/scipy/scipy-zh-cn/scipy_intro.html#b-spline