Multimodal Reasoning with Multimodal Knowledge Graph

摘要

大型语言模型(llm)的多模态推理常常存在幻觉和llm中存在缺陷或过时的知识。一些方法试图通过使用文本知识图来缓解这些问题,但其单一的知识形态限制了全面的跨模态理解。本文提出了多模态推理与多模态知识图(MR-MKG)方法,该方法利用多模态知识图(mmkg)跨模态学习丰富的语义知识,显著提高了法学硕士的多模态推理能力。其中,利用关系图关注网络编码MMKGs,设计了跨模态对齐模块优化图像-文本对齐。构建了基于mmkgground的数据集,通过预训练为llm提供多模态推理的初始专业知识。值得注意的是,MR-MKG在只训练一小部分参数(约为LLM参数大小的2.25%)的情况下取得了优异的性能。在多模态问答和多模态类比推理任务上的实验结果表明,我们的MR-MKG方法优于以前最先进的模型。

1.介绍

最近,大型语言模型(llm) (Chen et al ., 2020;Achiam等人,2023)已经证明了它们在各种NLP任务中的优越性和鲁棒性(Zhang等人,2024b;Robinson et al ., 2023;Chang et al ., 2024)。为了进一步释放法学硕士的潜力,研究人员(Wu et al ., 2023a;黄等,2023

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蜗子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>