python深度学习第一章

神经网络

  1.概念:  
      模拟生物的神经系统,对函数进行近似和估计。
     2.神经元

在这里插入图片描述
一个神经元的功能:求得的输入向量与权向量的内积后,经过非线性传递函数得到一个标量。

单层神经网络

在这里插入图片描述

感知机

感知机由两层的神经网络组成,输入层有n个神经元,输出层有一个神经元,输入层接受外界信号传给输出层(输出+1正例,输出-1反例)
简单的二分类,给定阈值,判断阈值属于哪一部分。

多层神经网络

a.输入层
b.输出层
c.隐层:可以有多层,每一层神经元的个数可以不确定
d.全连接层:第N层和第N-1层神经元两辆都有链接,进行的是y=wx+b

激活函数

a.线性
1.系统:函数,f,模型F(x)=y
2.f(x1+x2)=y1+y2
3.f(kx1)=ky
b.作用:
1.增加模型的非线性分割能力
2.提高模型的稳健性
3.缓解梯度消失
4.加速模型收敛

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页