深度学习-入门练手项目,案例,实战,二手汽车价格预测

本文介绍了如何使用PyTorch进行二手车价格预测的强化学习项目,包括数据集准备、模型定义、训练流程以及代码分享。作者使用阿里云二手汽车数据集,展示了从数据导入到模型保存的完整过程。
摘要由CSDN通过智能技术生成

强化学习-入门练手项目,案例,实战,二手汽车价格预测

1、背景介绍

这是一个深度学习技术的二手汽车价格预测,使用的数据集是阿里云的二手汽车数据集。

2、使用的库文件

使用了pytorch

3、具体流程

  • 0、导入库 pytorch
  • 1、定义数据集 SaleDataSet
  • 2、定义数据加载器
  • 3、实例化模型,加载模型,设置损失函数,优化器
  • 4、训练模型
  • 5、保存模型

3、代码链接

git仓库:https://github.com/xielianbin/CarPred.git

git项目网址:https://github.com/xielianbin/CarPred

4、结果展示

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值