状压dp(二)——#10173. 「一本通 5.4 练习 2」炮兵阵地

本文介绍了一种使用动态规划解决二维棋盘上特定状态转移问题的方法,通过记录本行与前一行的状态进行状态转移,避免了仅记录当前行状态可能导致的错误。文章详细解析了代码实现过程,包括状态检查、状态计数、状态转移等关键步骤。
摘要由CSDN通过智能技术生成

题目链接:https://loj.ac/problem/10173
解题思路
本题也与国王类似,只不过他需要看前面两行的状态,因此dp需要记本行与前一行的状态,才能转移,否则,如果只记录本行的状态,会导致错误。因为前面两个dp的状态可能不能同时取最大。
AC代码

#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
int n,m,cnt;
char mp[105][15];
int dp[105][105][105];
int sta[105];
vector<int>v[105];
vector<int>s[105];
bool check(int a,int b)
{
    for(int i=0;i<m;++i)
    {
        if(mp[b][i]=='H'&&((1<<(m-i-1))&a))
        return false;
    }
    return true;
}
int ct(int a)
{
    int tmp=0;
    while(a)
    {
        if(a&1)
        tmp++;
        a>>=1;
    }
    return tmp;
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i)
    scanf("%s",&mp[i]);
    dp[0][0][0]=0;
    for(int i=0;i<(1<<m);++i)
    {
        if(!(i&(i>>1))&&!(i&(i>>2)))
        {
            for(int j=1;j<=n;++j)
            {
                if(check(i,j))
                {
                    v[j+1].push_back(i);
                    int ss=ct(i);
                    s[j+1].push_back(ss);
                }
            }
        }
    }
    v[0].push_back(0);
    v[1].push_back(0);
    for(int i=2;i<=n+1;++i)
    for(int j=0;j<v[i].size();++j)
    for(int k=0;k<v[i-1].size();++k)
    for(int t=0;t<v[i-2].size();++t)
    if(!(v[i][j]&v[i-1][k])&&!(v[i][j]&v[i-2][t])&&!(v[i-1][k]&v[i-2][t]))
    dp[i-1][j][k]=max(dp[i-1][j][k],dp[i-2][k][t]+s[i][j]);
    int ans=0;
    for(int i=0;i<v[n].size();++i)
    for(int j=0;j<v[n+1].size();++j)
    ans=max(ans,dp[n][j][i]);
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值