tensorflow tf.keras.utils.plot_model 画深度学习神经网络拓扑图

tensorflow tf.keras.utils.plot_model 画网络拓扑图

# pip install graphviz
# pip install pydot
# 下载 graphviz,并添加到环境变量。  https://graphviz.gitlab.io/download/
import tensorflow as tf
import os
os.environ["PATH"] += os.pathsep + 'C:/Program Files/Graphviz/bin/' # graphviz的安装路径
tf.keras.utils.plot_model(
    model, # keras模型
    to_file="tensorflow 多输入 多输出 模型1.png", # 保存图片路径
    show_shapes=True, # 是否显示形状信息
    show_layer_names=True, # 是否显示图层名称
    rankdir="TB", # "TB":垂直图  "LR":水平图
    expand_nested=True, # 是否将嵌套模型展开为簇。
    dpi=96 # 图片每英寸点数。
)
### 解决从 `tensorflow.keras.utils` 导入 `plot_model` 时提示没有 Keras 的问题 当尝试从 `tensorflow.keras.utils` 导入 `plot_model` 函数并遇到错误提示找不到 Keras 或其他依赖项时,这通常是因为缺少必要的 Python 包或环境配置不正确。 #### 安装必要依赖 为了使 `plot_model()` 正常工作,除了 TensorFlow 外还需要安装两个额外的库: - **PyDot**: 这是一个用于处理 Graphviz dot 语言文件的 Python 接口。 - **Graphviz**: 是一个形可视化工具集,它提供了创建表所需的功能。 可以通过以下命令来安装这些依赖[^3]: ```bash pip3 install pydot sudo apt-get update && sudo apt-get install graphviz ``` 对于 Windows 用户,则应通过 Chocolatey 或者 MSI 安装程序获取 Graphviz[^4]。 #### 验证安装成功与否 完成上述操作之后,建议重启开发环境(IDE/Notebook),以确保新的模块被加载。接着可以在脚本里加入如下测试代码验证是否能够正常调用 `plot_model` 方法: ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.utils import plot_model model = Sequential([Dense(8, input_dim=4), Dense(1)]) plot_model(model, to_file='model_plot.png', show_shapes=True) print("Model plotted successfully.") ``` 如果一切顺利的话,这段代码应该不会抛出异常,并会在当前目录下生成一张名为 `model_plot.png` 的片文件表示神经网络结构[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏华东的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值