目录
行列式
基础概念
- 标准排列:由1、2、3、4、……到n组成的有序数组
- 3级排列:123 132 213 231 312 321
- n级排列数量:n的阶乘
- 逆序:大的在前面,小的在后面
- 对换:两个数交换位置
行列式定义
行定义公式
其中:,表示该排列的逆序数。
- 按行定义:行标取标准排列,列标取不同排列的所有可能,符号值为N
- 按列定义:列标取标准排列,行标取所有可能,符号值为N
- 不同行不行列:N(行标排序逆序数)+N(行标排序逆序数)
常用行列式
- 二阶值:主对角线-次对角线
- 三阶:
- 对角型行列式、上(下)三角行列式:值等于对角线乘积。
- 山寨上三角(次对角线):
- 分块行列式,如果A和B是m阶和n阶的矩阵
主对角线:
次对角线:
行列式性质
- 行列式转置,值不行。对行成立的性质,对列也成立。
- 两行(列)互换,值变号。
- 行列式两行(或两列)对应相等,行列式值等于0
- 某一行(列)都乘以数K,等于用K乘以某一行(列)。行列式某一行有公因子K,K可以提到外面。有多少个K,就提多少次。
- 两行(或两列)对应成比例,值为0(也就是提出去公因子以后,两行对应相等。如果行列式某一行全为0,则值为0(因为0可以提出去)。
- 行列式某一行是两数之和,则可以将该行拆分。变成两个行列式相加。
- 行列式某一行乘以数K,加到另一行上去,值不变。
行列式按行展开
概念
- 余子式:,把所在的第i行与第j列划去后,所留下来的n-1阶行列式叫元的余子式
- 代数余子式:
展开
- 按某一行展开:
- 按某一列展开:
定理
- 异乘变0定理:某行元素与另一行元素的代数余子式乘积之和等于0
- 拉普拉斯定理:取定K行,由K行元素组成的所有K阶子式,与代数余子式乘积之和为行列式值。代数余子式的符号为-1^(所有行号+列号)
- 同阶行列式相乘定理
行列式计算
加边法+爪型
x、y不等于0
第一步:加边。第一行乘以-1加到其它行。生成一个爪型行列式
第二步:依次第二列乘以1/x,加到第一列上去。第三列-1/x加到第一列。……
行(列)相等的行列式
示例:计算n阶行列式
思路,将所有行都往某一行加。比如将所有行加到第一行,得出。
第一行,乘以-a往下加。
三对角型
第一步:
结论1:
推导出:
所以X1和X2是的根
第二步:
将D2和D1行列式求出代入,得出结论:
第三步:
示例:
设定a=5,b=7,c=2,生成公式
所以x1不等于x2,x1=2,x2=5
代入
范德蒙行列式
- 反对称行列式(奇数阶值等于0)、对称行列式
滚动相消法
第一步:从最后一行,前一行乘以-1加到本行
第二步:将第1列的-1倍一次加到其它列,行成爪型,按爪型求解
克莱姆法则
要求:n个未知数,n个方程、D(系数行列式)不等于0。
D不等于0,如果奇次方程,只有0解。
示例:
矩阵
矩阵运算
加减法
同位置数字加减,需要同型矩阵
- A+B=B+A
乘法
- 矩阵*数k=矩阵所有元素*数k:矩阵所有元素都有公因子,公因子对外提一次
- 矩阵*矩阵=A的行*B的列,对应元素相乘,最后相加。
- 条件法则:中间相等,取两头
- AB不一定等于BA,如果A*B=B*A 则,A、B可交换。
- AB=AC,A不等于0,无法推出B=C。矩阵是没有消去律。
- A*B=0 无法推出A或者B等于0。如果A的行全是0,B的列全是0,则A*B=0
- 与单位矩阵E相乘,AE=A,EB=B
- 结合率:(AB)C=A(BC)
- 分配率:(A+B)*C=AC+BC ,C(A+B)=CA+CB
- k(AB)=kA*B=A*(kB)
幂运算(只限方阵)
- A的0次方,为单位阵E
- 一般
特殊矩阵(方阵)
- 单位矩阵:主对角线元素都是1,其它元素都为0
- 数量矩阵:主对角线元素相等,其它元素都为0.0矩阵和单位阵都是特殊的数量矩阵
- 对角矩阵:是一个主对角线之外的元素皆为0的矩阵。隐身含义,与单位和数量矩阵不同的地方是,他的对角线元素可以各不相同。主对角线元素a1,a2,a3,a4……an,其它元素都为0.写法:diag(a1,a2,a3,a4……an)。对角乘以对角,结果仍是对角。
- 三角型:类型行列式。三角乘以三角,结果扔是原三角。
- 对称:。实对称矩阵都可以相似对角化,实对称矩阵和二次型一一对应。
- 反对称: ,对角线元素都是0,,奇数反对称行列式等于0。
- 如果A和B是同阶对称矩阵,如果A*B依然是对称的充要条件是AB可交换
- 正交矩阵:。正交矩阵的行列式只能等于1或-1.本质是n个两两正交的单位向量拼成的。
重点矩阵
转置矩阵
伴随矩阵
只有方阵才有伴随矩阵
- 如果A=(5),则A*=(1)
逆矩阵
注意不要把矩阵放到分母上
- AB=BA=E
- :方阵的行列式(属性),方阵的行列式与方阵的转置行列式相等。也就是行列式的性质,行列式转置值不变。
- :n表示是几次方阵
- 示例:A是5阶,
- :A*B的行列式等于A的行列式乘以B的行列式
- 未必所有方阵都可逆,如果可逆,逆矩阵唯一,并且等列式不等于0.
- 如果,非奇异非退货满秩
- 可逆的充要条件:。
- 推论:AB=E(BA=E),则A可逆
- 如果A可逆,则A的逆矩阵可逆。
- 如果AB都可逆,则AB可逆
- 如果A可逆,A的转置可逆。
- 如果A可逆,
- 如果A可逆,A*可逆,
初等变换
变换方法
- 交换两行
- 用k(k不等于0)乘以某一行
- 某一行的L倍加到另一行去,L可以是0行也可是列,初始变换不能用等号,他是一种变化
定理
- 定理1:左乘(EA)变行,右乘(AE)变列
初等方阵:对单位阵E做一次实等变换得到的矩阵。初等方阵也有初等变换的3种方式。初等方阵是一个结果,初始变换是一个操作的过程。 - 定理2:任意矩阵都可以通过初等变换化成标准矩阵。任意A经过有限次初等行(列)可以转化为标准型: (E为标准型)
示例
三种初等方阵:原始如下.因为值不为0,所以:
(1)三种初等方阵都可逆(2)其逆矩阵也是初等方阵(3)初等方阵的转置也是初等方阵
原始单位阵 | |||
操作 | A交换两行:13行交换
| B:某行乘以l , | C:第三行5倍加到第一行
|
结果 | |||
行列式值 | -1 | 5 | 1 |
逆矩阵 |
分块矩阵
基本概念
- 概念:用横线或竖线贯穿将矩阵分成若干子块,以这些子块生成的矩阵叫分块矩阵
- 标准形:从左上角开始的一串1,不能断,其余地方全是0。它不一定是方阵。全是0也是。总结为:
运算法则
分块加法
对应元素相加
分块与常数k
分块乘法
把分块当做元素,规则与元素相乘一样。保证前提是分出来的块符合矩阵可以相乘的原则
转置
把分块先当做普通元素转,然后对每个了块求转置
逆运算
幂运算
矩阵的迹
概念
设A是n阶方阵,则A的主对角线元素之各为矩阵的迹,记做tr(A)。只有方阵才有迹。
性质
矩阵相加减:
若AB相似,则
若,则
秩和等价
概念
- 秩:非零子式的最高阶数,符号为r,0矩阵的秩为0。A的秩=A的行秩=A的列秩。
- 等价3种解释:
由A经有限次初等变换得到B,A就等价于B。
公式写法:存在可逆矩阵PQ,PAQ=B。
形状相同,秩相等。 - 矩阵等价和向量等价的区别
向量:等价,能想到表示。
矩阵:AB等价,AB同型,秩相等。者没有关联
秩结论
- 若矩阵
- 拼接矩阵:
-
分块矩阵:
-
AB积,小于AB中较小者。
-
-
设,为m阶可逆方阵,为n阶可逆方阵,则:
实际上可以理解为对A进行初等变换,实等变换不会改变秩。 - 若P为列满秩,r(PA)=r(A).若Q为行满秩,r(AQ)=r(A).
- 若,则
- 。举例解释。如果A的秩是n-1,则伴随是1
- A的秩为r,有一个r阶子式不为0,r+1阶为0
- 如果A是方阵,并且满秩,则A可逆
- 矩阵*可逆矩阵,秩不变
等价结论
等价的性质:
- 反身性:A与自己等价
- 对称性:A如果B等价,B与A等价
- 传递性:A等价B,B等价C,则A等价于C,
-
推论:如果,则PAQ=B(如果AB等价,充要条件是存在可逆矩阵PQ,PAQ=B)
A可逆,则A的标准型为单位阵E
A可逆,A可以写成n个初始矩阵的乘积
向量
涉及概念
研究问题
- 相关性问题:向量组线性相关
- 代表性问题:级大线性无关组,向量组的秩
- 表示性问题:向量组等价
- 等价性问题:矩阵的我们的、矩阵等价
向量的模
运算法则
与矩阵的运算规律相同
向量内积
内积也叫点乘或数量积
具有有交换律:
具有分配律:
备注:
如果一个向量模为0,则该向量为0向量。
如果内积为0,则两个向量正交。
- 向量:, 或者
线性关系
基础概念
- 线性组合:如果,则是的线性组合,k叫做组合系数。用表示的线性组合,也叫线性表示。
- 定理:
(1)零向量可由任意向量表示
(2)向量组中任意一个向量可由向量组表示
(3)任意向量可由单位向量组表示 - 向量等价:两个同组向量组可以相互线性表示(也可以理解为A或B里的任意一向量可由另一向量组表示)
- 等价的向量组:(1)反身性,一个向量组和他自己是等价的(2)对称性:向量组A与B等价,则B与A等价(3)传递性:A等价B,B等价C,A等价C
线性相(无)关
定义
是同维向量组,若k全不全为0则线性相关,反之线性无关。线性无关,实际上k全为0
结论
- 组中两个向量成比例,向量组一定线性相关。
- 含有0向量的向量组必线性相关
- 一个零相量必线性相关
- 一个非零线性必线性无关,也就是他的系统不等于0
定理
- 如果线性相关,则至少有一个向量可由其它向量表示。简单理解为,向量组中存在“多余向量”。
- 线关,增加一个向量后,相关。可用唯一表示。若增加后依然无关,则不可以用新向量表示。
- 部分组相关,整体组相关。整体组无关,部分也无关。部分相关,整体相关。
- n个n维向量线性无关,其构成的行列式不为0。反之,n阶行列式不等于0,则构成n个向量线性无关。
- n+1个n维向量,一定线性相关。
- 针对向量组的维数,无关向量组,接长也无关。原来相关,截短也相关。
- 正交非零向量必无关。
- 替换定理:无关,可由线性表示,n<=t。逆否命题,如果A可由B表示,则n<t
- 两个等价的线性无关组,含向量的个数是相关的。
- n个n维向量构成的行列式值不等于0,则线性无关。等于0,就线性相关(本质 是方阵)。相关,有非0解。无关,只有非0解。
极大线性无关组和秩
基本概念
极大线性无关组
定义:(1)线性无关 (2)其它向量可由表示
求法:极大线性无关组的求法:(1)不管行还是列,只按列构成矩阵(2)做成行简化阶梯型(3)首非零所在列做成极大线性无关组(4) 其余向量表示系数直接写出来
推论:全是0的向量组没有极大线性相关组,线性无关的组极大线性无关组就是自己,任何一个向量组和他的极大线性无关组是等价的
备注:向量组的极大线无关组不具备唯一性,这不同给的向量量个数总数是相关的。找极大线无关组的的过程,就是去除多余向量,筛选独立向量的过程。如果一个向量组已经线性无关了,那么极大线性无关组就是他本身。
向量组的秩
定义:极大线性无关组的个数
重要结论
- 向量组线性相关,等价于
- 向量组线性无关,等价于,满秩
- 可以被线性表示,等价于
- 不能被线性表示,等价于
- 矩阵初等行变换,不改变矩阵列向量的线性关系和表示系数
- 矩阵初等列变换,不改变矩阵行向量的线性关系和表示系数
向量等价
重要结论:
向量组,向量组
- 若X可由Y表示,则
- 若X可由Y表示,便Y不可以由X表示。则
- 若X可由Y表示,Y可以由X表示。则等价。
- 若X可由Y表示,,则X、Y等价
- 若X可由Y表示,且X中向量的个数大于Y中向量的个数。则X必定线性相关。以少表多,多必相关
方程组
概念
三种形式
- 普通形式:一个一个和写出来
- 矩阵形式:
- 向量形式:
其它概念
- 系数矩阵(略),记做A
- 增广矩阵(略) ,记做
- 方程组m、n 。m表示方程的个数,n表示未知量的个数
解的判定
综合结论
- 当,唯一解
- 当,无数解
- 当,无解
判断过程
- 写出
- 只行,化阶阶梯型
- 判断与,非0行的行数与带虚线的非0行的行数是否相等。相等有解。
- 不相等无解。化行简阶梯型,不管0行。非0行的首非0源留在左边。其余变量移动到右边,需要变号,得到一般解。
齐次方程组
简要
写法:
因为,所以至少有0解。
定理
- 如果,仅有0解。
- 如果,无穷个解。
推论
- m<n,有非0解。也就n+1个n维向量一定线性相关。
- 方程个数等于未知数个数(方阵),有非0解的充要条件是,,只有0解的充要条件。行列式不等于0,说明方阵可逆。推导过程:Ax=0。都乘以.变成x=0。
- 当A为列满秩的时,A在矩阵乘法中有左消去律。,可以推出。,可以推出。
- 当A为列满秩的时,
非齐次方程组
简要
写法:
叫做的导出组
定理
- 无解:
- 当,唯一解
- 当,无数解
推论
- (1)是的解。则是的解。
证明过程: - (2)是的解。是的解。则是的解
证明过程:
解的结构
概念
的解:
的一个特解+的基础解的线性组合
公式:
重要结论
结论1:齐次解的线性组和,仍是齐的解。
公式:设是的解,则也是的解
示例:
是Ax=0的解,则也是解。
推导过程:
结论2:齐的解+非齐的解=齐的解
公式:设分别是的解。则一定是的解。
结论3:是的基础解,则是的通解。
结论4:是Ax=0的解,也是解。
推导过程:
基础解法
本质及条件
本质:
- 基础解其实就是极大线性无关组
条件:
- 是的解
- 线性无关
- 基础解系包含的解的向量个数
步骤
- 做成系数矩阵,做成行简化阶梯
- 将非0移动到右边,生成自由未知量
- (3)拼接原有系数组,将线性单位组合并。
令
得到:
得出结果:
(1)线性无关
(2)任意解可由表示
例题
如果,证明
解:
将B分块,
,所以是的解。
如果:
(1),则,唯一0解
(2),有无穷个解,基础解系有个,
特征值与特征向量
基本概念
内积
多个向量对应元素相乘再相加。内积是一个数。
示例
也可以写成
后面的向量需要是列向量
性质
- ,只有为0时,内积为0
长度(范数、模)
概念
根下做内积。
如果,就是单位向量。如果不是单位向量,可以进行单位化(标准化)
性质
- 可以简单理解为三角型两条边之和大于第3条边。
单位化
向量除以自己的模
特征值与特征向量
基本定义
特征定义:A是n阶方阵,若存在非零列向量,,那么就是一个特征值,就是特征向量。不能为0,可是0。
是列向量
由公式可以看出,需要得出的结果是n*1的矩阵,B只能是n*1
推导过程:
因为E和A都是方阵,将之组成线性方程组
因为x不等于0,那么这个线性方程组的非零解的充要条件是系数行列式等于零,所以只需要求,这个行列式形成一个特征方程。
计算方法
- 先求所有的特征值,再计算每个特征值对应的特征向量
- 当A为具体矩阵时,就用求特征值,用求很特征向量
- 当A为抽象矩阵时,就用定义
重要性质
- 矩阵A的所有特征值之和等于,征值之积。可以推出,A的行列式不等于0,则A的特征值全不为0。
- 属于不同特征值的特征向量一定线性无关。对应的线性无关
- 互异的特征值对应的无关线性组,线性无关
举例:特征值对应向量,对应线性无关
若,则线性无关。 - k重特征根,对应的线性无关的特征向量的个数,不于等于k。n阶方阵线性无关的向量个数最
- k重特征值最多保有k个线性无关的特征向量
- 属于同一个特征值的特征向量的非零线性组合仍然是该特征值的特征向量
示例1:
是A的特征值,是对应的特征向量,也是特征向量。
一个特征值可以对应多个特征向量,但是一个特征向量,只能对应一个特征值。
证明过程:
若是的特征向量,则,
因为不是0,所以推出,与假设矛盾。
示例2:
是的特征向量,则是的特征向量。
把当天一个整体,可以看出来
-
A的属于不同特征值的特征向量,他们的线性组合一定不是A的特征向量
-
若矩阵A满足多项式,则A的特征值也满足
如果.推出 -
矩阵变换与特征值的关系
矩阵 特征值 特征向量 不一定是
推论
- 三角型矩阵的特征值就是对角线
- 0矩阵性质:的特征值是0,特征向量是
- 和有相同的特征值:
证明过程: - 矩阵A的n个特征值是
a)所有特征值之和等于主对角线元素之和:
b)所有特征值相乘等于A的行列式:
c)A可逆充要条件:特征根不能有0。其它条件:A的行列式不等于0,A的是满秩 - 是的特征值,是的特征值,是的特征值
示例:2是A的特征值,求特征值
解法:直接A替换为2,E替换是数字1,结果就是: - 如果是A的特征值,则是(A逆)的特征值是的特征值。推论:
的特征是
例题:已知A为4阶方阵,,求的一个特征值
解:根求特征值公式,,推出:,所以A的特征是-3
,
因为,所以
所以的特征值是4/3
相似与对称
概念
相似矩阵
AB为n阶方阵,如果可以找到n阶可逆矩阵P,,A相似于B。记做
A相似于对角型,则A可以对角化。
A有n个线性无关的特征向量。
三个性质
- 反身性:
- 对称性:。推导过程:
- 传递性:
推导过程:
相似对角化
相似矩阵的其它性质
- ,
推导过程: - ,A可逆则B可逆,A不可则B不可(原理,可以根据行列式的值是否为0进行推导)
相似对角化判定
具体类
- 看是不是实对称矩阵,如果是实对称矩阵,立即推可相似对角化,如果不是实对称矩阵,看下一步
- 求方阵的n个特征值,如果特征值彼此都不相同,也就是都是单根的话,立即推可相似对角化,如果有重根,看下一步
- 来验证k重根是不是具备k个线性无关的特征向量,也就是看的秩是否等于n-k,若相等,立即推可相似对角化,不相等,则不能进行相似对角化。
抽象类
只要是要证明A可以相似对角化,就是考察特征值的重数和特征向量的个数。因为A可以相似对角化的充要条件是:所有k重特征值都对应有k个线性无关的特征向量。
快速判断可以相似对角化的几个类型
- n阶矩阵A有n个不同的特征值
- n阶矩阵A有n个无关的特征向量
- 矩阵A的每个k重特征值都有k个线性无关的特征向量
- 实对称矩阵一定可以相似对角化
- 迹的秩一矩阵A,一定可以相似对角化
- 对角阵一定可以相似对角化,且其特征值是对角线上的元素
例题:
例1
,求A是不是相似于对角型?P是什么,对角型是什么?
解:
(1),求出
(2)当,求,进行行简化阶梯型,得到解系:
(3)当,求,进行行简化阶梯型,得到解系:
(4),向量需要与特征值依次对应
例2
A为方阵,特征值为1,2,3,求,P和P逆
解:
实对称矩阵的对角化
实对称矩阵性质
- 实对称矩阵的特征值全是实数。非实对称矩阵不满足该性质
- 实对称矩阵,取自不同的特征值和特征向量,不公无关,而且正交。
- 实对称矩阵一定可以相似对角化,且相似于特征值组成对角矩阵
- 一定可以经过施密特正交化、单位化,实现正交对角化
正交向量
两个向量的内积为0. 。0向量与任何向量都正交。自身正交的向量只有0。
正交向量组
一个向量组里,两两都正交。但是不能有0向量。
如果向量组里的每个向量都是单位向量,这个组叫做标准正交向量组。
定理:如果是正交向量组,则该组线性无关。
正交矩阵
定义
A是n阶方,
或,则是正交矩阵
性质
推导过程:- ,和均是正交矩阵
,所以
,所以是正交矩阵 - 如果A、B是n阶正交矩阵,则AB也是正交。推导过程:
- 如果A是正交矩阵,是n维列向量,,
推导过程,核心要点:内积的定义,最终都是一个行向量乘以列向量。所以的结果是一个列向量。行向量列向量相乘,就是内积的定义。
定理
定理1
如果A是正交矩阵, A的列向量或者行向量组是标准正交向量组。
证明过程:利用分块矩阵,假设A的列向量是
因为,所以对角线的积是1:,得出结论对角线上的内积为1,非对角线上的内积为0:
例题1
三阶非0矩阵A,,求证,A是正交矩阵
解:
因为,所以,所以A是正交矩阵
因为,,两边取行列式,
所以A为0或者1,因为A是正交矩阵,所以一定是可逆矩阵,所以行列式不等于0
定理2
实对称矩阵A的不同特征值的的特征向量正交
证明过程:
已知:
因为,所以,正交
施密特正交化
给一组线性无关的,与与之等价的正交
一般求解过程:先正交化,再进行单位化
正交相似
定义
存在P,
正交相似定义:正交矩阵P,
相似的一种情况 ,方阵A与方阵B相似是指存在可逆矩阵P,使得。
方阵A与方阵B正交相似是指存在正交矩阵P,使得
正交阵P的含义是
正交相似是相似的一种特例。因为正交,,所以正交相似,一定相似。所以正交相似也一定可以等于对角型。
求正交矩阵
概念
给实对称矩阵A,求正交Q。
矩阵对角化两种情况:
1、如果有n个线性无关的特征向量:
2、如果没有,不对角化
实对称矩阵一定能对角化。
方法
要求
给实对称矩阵A。求正交Q、和对角矩阵
步骤
- 求特征值
- 求特征向量
- 正交化、单位化
- 做成列,构成Q
- 对角型为特征值
情况判定
情况1
都是单根
互异,分别对应向量,因为对称矩阵,已经正交,所以只需要做单位化。
情况2
有重根
,分别对应向量
把当,进行施密特正交化。
例题
例题1
,求正交矩阵
解:
1)求特征值:,
2)求特征向量:
当,求出特征向量
3)将施密特正交化得出
4)将单位化得
当,求出特征向量
直接将单位化,得出
例题2
三阶对称矩阵A,,对应的,求A
解:假设对应的
因为正交向量内积为0.
令自由未知量为,则
二次型
二次型的背景
从代数学上看,将二次型的普通多项式化为标准型的过程,是通过线性换元消去交叉项,保留平方项。从而简化该二次齐次多项式的过程。总之,将二次型化为标准型,总结起来就是:干掉交叉项。
二次型定义
一般形式
含有n个变量的的二次齐次函数,称为n元二次型
矩阵形式
公式表达
令
规定,即A为实对称矩阵,则称是二次型的矩阵表示,其中,对称矩阵A称为该二次型对应的矩阵称为该二次型的秩。
二次型化矩阵
- 平方项直接做成主对角线元素
- 交叉项的系数除以2放到两个对称的位置相应位置
示例:
写为:
二次型的矩阵一定是对称的,所以
矩阵化二次型
主对解线元素直接做为平方项的系数
取主对角线右上角元素乘以2做为交叉项的系数
其它概念
标准型
只有平方项,没有交叉项。dn可以取0。标准型对应的矩阵称为对角矩阵。
线性替换
方法
引入线性替换,令
令,因为标准型只有平方项,
如果C的行列式不等于0,叫做可逆(非退化,满秩)替换
同时B也是对称的:
为什么用可逆的线性变换
- 线性替换原因:只有线性变换x=Py(或y=Px)才能交接这种二次型变成另一种二次型,从而保证研究对象在形式上是不变的,有利于研究
- 可逆原因:当P可逆时,方程组有唯一解,且对于任意给定的x均可确定出唯一的y。对于任意给定的y也可以确定出唯一的x,二次一一对应。如果P不可逆,则方程组x=Py(或y=Px)要么无解,要么有无穷多解,从几何意义上来看,相当于标准型中某个坐标点在原二次型中要么没有点可以与之对应,要么有无数个点与之对应,那么标准型中的信息就无法反馈到原二次型上,所以这样的换元就是无效换元
特殊情况
两次替换
二次型化标准型
配方法
- 一次只配一个变量,要配干净。先从x1,再x2...x3。使用过的x1,后面不能再使用x2
- 原来的二次型 有几个变量,换元之后也应该有几个变量,不公多也不会少
- 本配方法化为标准型以后,平方项前的系数不一定是特征值
示例
示例1
有平方项和交叉项
示例2
只有交叉项
令,得到平方项
初等变化法
方法
- 对A和E做同样的初等列变换
- 只对A做相应的初等行变换
- A化成对角阵时,E化成的就是C
示例
示例1:
第一步:第一列乘以-1加到第二列
正交替换
步骤
- 根据二次型写出对应的实对称矩阵
- 求正交矩阵,使得
- 得结论:做正交替换,则二次型化为标准型
备注
- 由于任何一个实对称矩阵都一怀个对角矩阵合同,所以任何一个实二次型都可以通过可逆的线性变换为标准型
- 利用正交化替换将二次型化为标准型后,标准型里平方项前的系数就是A的特征值,而通过其它的方法化为标准型后,那睦标准型中的平方项前的系数就不一定是A的特征值了
惯性定理
规范型
按1、-1、0一次排序(非零系数为1和-1)的标准型。规范型的秩=1加-1的总数,等于原矩阵的秩
不管怎么化,1,-1,0的数量不会变。
任意给定的二次型,虽然标准型并不唯一,但是规范型一定是唯一的。
惯性指数
规范型里,1的数量叫正惯性指数,-1的数量叫负惯性指数
符号差=正惯性指数-负惯性指数
定理
任意一个矩阵与规范型合同。有相同的秩、正负惯性指数。
解释:对于任何给定的二次型,虽然其标准型并不唯一,比如正交替换和配方法得到的标准型往往不一样,但在不同的标准型中,非零系数的个数,正系数的个数,负系数的个数均保持不变。分别称为该二次型的惯性指数r(秩)、正惯性指数p,负惯性指数q,该性质被称为“惯性定理”。
有定性
概念
前提: | ||
名称 | 公式 | 值 |
正定 | ||
半正定 | ||
负定 | ||
半负定 |
定理
- 正定二次型经过线性替换,仍是正定。
证明:,C是可逆的。
Y不等于0,X不等于0,所以f(X)>0 - 是正定的充要条件是:
1),
2)正惯性指数是n
3)A与单位阵合同
可以推导出:
1)行列式
2)n个特征值都大于0 - 如果A是正定,A逆也是正定。
证明:因为A正定,那么A的特征值全大于0,A逆的特征值是A的倒数,所以大于0 - 如果A是正定,A伴随也是正定。
- 如果A是正定,A的k次方也是正定。
- 如果A是正定,B也是正定。那么A+B也是正定。
- 如果A是正定,A的主对角线元素都大于0
顺序主子式
定理:各阶顺序主子式都大于0
生成矩阵:
一阶主子式 | 二阶主子式 | 三阶主子式 |
正定二次型与正定矩阵
定义
对于二次型,若对任意的,恒有(即,要想,除非),则称该二次型为正定二次型,并将该二次型对应 的矩阵为正定矩阵。
判定方法
六大充分必要条件
- 对于任意的,恒有
- 的特征值均大于0
- 的正惯性指数p=n
- 与单位矩阵合同(即存在可逆矩阵,使得
- 的全部顺序主子式均大于0
两个必要条件
经验
只要是给出了具体的二次型,就把二次型的矩阵写出来,用顺序主子式均大于0这个充要条件判断是最快的
合同
概念
合同
AB是两个n阶方阵,如果,如果存在可逆矩阵C。。则合同。
假设某二次型在进行可逆线性变换前后所对应的矩阵分别和,则一定合同
合同对角化
如果存在可逆矩阵C。
性质
- 反身性。
- 对称性:。证明:
- 传递性:,证明:
- ,秩相等
- 。如果A可逆,B也可逆。如果A不可,B也不可。
判定方法
对于实对称矩阵,A与B合同的充要条件是的正负惯性指数完全相同
- 上述定理由惯性定理所保证,因为一但AB的正负惯性指数对应相等,那么根据合同的传递性,就可以得出AB合同
- 对称矩阵与非对称矩阵一定不可能合同,与对称矩阵的合同矩阵一定是对称矩阵
- 实对称矩阵A的正惯性指数就是他的正负特征个数
- 两个实对称矩阵合同的充要条件是他们的正负特征值的个数完全相同
性质对比
类型 | 概念 | 公式 |
等价 | AB同型,存在可逆矩阵PQ, | |
相似 | 如果AB同阶方阵,如果存在可逆矩阵P | |
正交相似 | 如果AB同阶方阵,如果存在正交矩阵P | |
合同 | 如果AB同阶方阵,如果存在可逆矩阵P |
正交相似,一定相似。因为正交,所以。所以正交相似,也是合同。也是等价。
相似、合同,一定是等价。