线性代数学习笔记

目录

行列式

基础概念 

行列式定义

行定义公式

 常用行列式

行列式性质

行列式按行展开

概念

展开

定理

行列式计算

加边法+爪型

行(列)相等的行列式

三对角型

范德蒙行列式

滚动相消法

克莱姆法则

矩阵

矩阵运算

加减法

乘法

幂运算(只限方阵)

特殊矩阵(方阵)

重点矩阵

转置矩阵

伴随矩阵

逆矩阵

初等变换

变换方法

定理 

示例

 分块矩阵

基本概念

运算法则

分块加法

分块与常数k

分块乘法

转置

逆运算

幂运算

矩阵的迹

概念

性质

秩和等价

概念

秩结论

等价结论

向量

涉及概念

研究问题

向量的模

运算法则

向量内积

线性关系

基础概念

线性相(无)关

定义

结论

定理

极大线性无关组和秩

基本概念

极大线性无关组

向量组的秩

重要结论

向量等价

方程组

概念

三种形式

其它概念

解的判定

综合结论

判断过程

齐次方程组

简要

定理

推论

非齐次方程组

简要

定理

推论

解的结构

概念

重要结论

基础解法

本质及条件

步骤

例题

特征值与特征向量

基本概念

内积

示例

性质

长度(范数、模) 

概念

性质

单位化 

特征值与特征向量

基本定义

是列向量

计算方法

重要性质

推论

相似与对称 

概念

相似矩阵

三个性质 

 相似对角化

相似矩阵的其它性质

相似对角化判定

具体类

抽象类

例题:

例1

例2

实对称矩阵的对角化

实对称矩阵性质

正交向量

正交向量组

 正交矩阵

定义

性质

定理

定理1

例题1

定理2

施密特正交化

正交相似

定义

求正交矩阵

概念

方法

要求

步骤

情况判定

情况1

情况2

例题

例题1

例题2

二次型

二次型的背景

二次型定义

一般形式

矩阵形式

公式表达

二次型化矩阵

矩阵化二次型

其它概念

标准型

线性替换

方法

为什么用可逆的线性变换

特殊情况

二次型化标准型

配方法

示例

示例1

示例2

初等变化法

方法 

示例

正交替换

步骤

备注

惯性定理

规范型

惯性指数

定理

有定性

概念

定理

顺序主子式

正定二次型与正定矩阵

定义

判定方法

六大充分必要条件

两个必要条件

经验

合同

概念

合同

合同对角化

性质

判定方法

性质对比 


行列式

基础概念 

  • 标准排列:由1、2、3、4、……到n组成的有序数组
  • 3级排列:123 132 213 231 312 321
  • n级排列数量:n的阶乘
  • 逆序:大的在前面,小的在后面
  • 对换:两个数交换位置

行列式定义

行定义公式

\begin{vmatrix} a_{11} & a_{12} &\cdots &a_{1n} \\ a_{21}& a_{21} &\cdots&a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots& a_{nn} \end{vmatrix}= \sum_{j_1j_2\cdots j_n}^{}(-1)^{N(j_1j_2\cdots j_n)}a_{1j_1}a_{2j_2}\cdots a_{nj_n}

其中:N(j_1j_2\cdots j_n),表示该排列的逆序数。

  • 按行定义:行标取标准排列,列标取不同排列的所有可能,符号值为N
  • 按列定义:列标取标准排列,行标取所有可能,符号值为N
  • 不同行不行列:N(行标排序逆序数)+N(行标排序逆序数)

 常用行列式

  1. 二阶值:主对角线-次对角线
  2. 三阶:
  3. 对角型行列式、上(下)三角行列式:值等于对角线乘积。
    \begin{vmatrix} a_{11}&* &* \\ &*&* \\ & & a_{nn} \end{vmatrix}= \begin{vmatrix} a_{11}& &\\ *&*& \\ * & *& a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11}& &\\ &*& \\ & & a_{nn} \end{vmatrix} =a_{11}\cdots a_{nn}
  4. 山寨上三角(次对角线):
    \begin{vmatrix} *&* &a_{n1}\\ *&*& \\ a_{n1}& & \end{vmatrix}= \begin{vmatrix} & &a_{1n}\\ &*&* \\a_{n1} &* &* \end{vmatrix}= \begin{vmatrix} & &a_{1n}\\ &*& \\a_{n1} & & \end{vmatrix} =(-1)^Na_{11}\dots a_{nn}\\ N={\tfrac{n(n-1)}{2}}
  5. 分块行列式,如果A和B是m阶和n阶的矩阵
    主对角线:\begin{vmatrix} A &* \\ 0 & B \end{vmatrix}= \begin{vmatrix} A &0 \\ * & B \end{vmatrix}=\left | A \right | \cdot \left | B \right |
    次对角线:\begin{vmatrix} 0 &A \\ B & * \end{vmatrix}= \begin{vmatrix} * &A \\ B & 0 \end{vmatrix}=(-1)^{mn}\left | A \right | \cdot \left | B \right |

行列式性质

  • 行列式转置,值不行。对行成立的性质,对列也成立。
  • 两行(列)互换,值变号。
  • 行列式两行(或两列)对应相等,行列式值等于0
  • 某一行(列)都乘以数K,等于用K乘以某一行(列)。行列式某一行有公因子K,K可以提到外面。有多少个K,就提多少次。
  • 两行(或两列)对应成比例,值为0(也就是提出去公因子以后,两行对应相等。如果行列式某一行全为0,则值为0(因为0可以提出去)。
  • 行列式某一行是两数之和,则可以将该行拆分。变成两个行列式相加。
  • 行列式某一行乘以数K,加到另一行上去,值不变。

行列式按行展开

概念

  • 余子式:M_{ij},把所在的第i行与第j列划去后,所留下来的n-1阶行列式叫元的余子式
  • 代数余子式:A_{ij}=(-1)^{i+j}\cdot M_{ij}

展开

  •  按某一行展开:D_n=a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots +a_{in}A_{in}=\sum_{j=1}^{n}a_{ij}A_{ij}
  •  按某一列展开:D_n=a_{1j}A_{1j}+a_{2j}A_{2j}+\cdots +a_{nj}A_{nj}=\sum_{j=1}^{n}a_{ij}A_{ij}

定理

  • 异乘变0定理:某行元素与另一行元素的代数余子式乘积之和等于0
  • 拉普拉斯定理:取定K行,由K行元素组成的所有K阶子式,与代数余子式乘积之和为行列式值。代数余子式的符号为-1^(所有行号+列号)
  • 同阶行列式相乘定理

行列式计算

加边法+爪型

x、y不等于0

第一步:加边。第一行乘以-1加到其它行。生成一个爪型行列式

\begin{vmatrix} 1+x &1 &1 &1 \\ 1& 1-x &1 & 1\\ 1& 1 & 1+y& 1\\ 1 &1 &1 & 1-y \end{vmatrix}= \begin{vmatrix} 1&1&1&1&1\\0&1+x &1 &1 &1 \\0& 1& 1-x &1 & 1\\ 0&1& 1 & 1+y& 1\\ 0&1 &1 &1 & 1-y \end{vmatrix}

第二步:依次第二列乘以1/x,加到第一列上去。第三列-1/x加到第一列。……

\begin{vmatrix} 1&1&1&1&1\\ -1&x &0 &0 &0 \\ -1& 0& -x &0 & 0\\ -1&0& 0 & y& 0\\ -1&0 &0 &0 & -y \end{vmatrix}= \begin{vmatrix} (1+\frac{1}{x}-\frac{1}{x}+\frac{1}{y}-\frac{1}{y})&1&1&1&1\\ 0&x &0 &0 &0 \\0& 0& -x &0 & 0\\ 0&0& 0 & y& 0\\ 0&0 &0 &0 & -y \end{vmatrix}=x^2y^2

行(列)相等的行列式

示例:计算n阶行列式D=\begin{vmatrix} x& a & a &a &a &a \\ a & x & a &a &a & a\\ a & a&x & a& a& a\\ a &a & a&x &a & a\\ \cdots & \cdots & \cdots &\cdots &\cdots &\cdots \\ a& a& a& a & a &x \end{vmatrix}

思路,将所有行都往某一行加。比如将所有行加到第一行,得出。

\begin{vmatrix} x+(n-1)a& x+(n-1)a & x+(n-1)a &x+(n-1)a &x+(n-1)a &x+(n-1)a \\ a & x & a &a &a & a\\ a & a&x & a& a& a\\ a &a & a&x &a & a\\ \cdots & \cdots & \cdots &\cdots &\cdots &\cdots \\ a& a& a& a & a &x \end{vmatrix}=x+(n-1)a\begin{vmatrix}1& 1& 1&1 &1&1 \\ a & x & a &a &a & a\\ a & a&x & a& a& a\\ a &a & a&x &a & a\\ \cdots & \cdots & \cdots &\cdots &\cdots &\cdots \\ a& a& a& a & a &x \end{vmatrix}

第一行,乘以-a往下加。

=x+(n-1)a\begin{vmatrix}1& 1& 1&1 &1&1 \\ 0 & x-a & 0 &0 &0 & 0\\ 0 & 0&x-a & 0& 0& 0\\ 0 &0 & 0&x-a &0 & 0\\ \cdots & \cdots & \cdots &\cdots &\cdots &\cdots \\ 0& 0& 0& 0 & 0 &x-a \end{vmatrix} \\ =[x+(n-1)a](x-a)^{n-1}

三对角型

D_n=\begin{vmatrix} b &a &0 &\cdots & 0 &0 \\ c &b &a &\cdots & 0& 0 \\ 0& c &b &\cdots &0 &0 \\ \vdots& \vdots & \vdots & \vdots& \ddots & \vdots \\ 0& 0& 0 & c &b &a \\ 0& 0 & 0& 0& c & b \ \end{vmatrix}

第一步:

结论1:D_n=bD_{n-1}-acD_{n-2}

推导出:\left\{\begin{matrix} D_n-X_1D_{n-1}=X_2(D_{n-1}-X_1D_{n-2}) \\ D_n-X_2D_{n-1}=X_1(D_{n-1}-X_2D_{n-2}) \end{matrix}\right.

所以X1和X2是X^2+bX+ac=0的根

\left\{\begin{matrix} X_1+X_2=b\\ X_1X_2=ac \end{matrix}\right.

第二步:

D_n-X_1D_{n-1}=X_2(D_{n-1}-X_1D_{n-2})\\=X_2^2(D_{n-2}-X_1D_{n-3})\\=X_2^{n-2}(D_2-X_1D_1)

将D2和D1行列式求出代入,得出结论:

D_n-X_1D_{n-1}=X_2^n

第三步:

x_1\neq x_2,\left\{\begin{matrix} D_n-X_1D_{n-1}=X_2^n \\ D_n-X_2D_{n-1}=X_1^n \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} X_2 D_n-X_1X_2D_{n-1}=X_2^{n+1} \\ X_1 D_n-X_1X_2D_{n-1}=X_1^{n+1} \end{matrix}\right. \rightarrow Dn \\ =\frac{X_2^{n+1}-X_1^{n+1}}{X_2-X_1}

x_1=x_2, D_n-X_1D_{n-1}=X_1^n \\ D_n=X_1D_{n-1}+X_1^n\\ =X_1^{n-1}D_1+(n-1)X_1^n\\ =X_1^{n-1}b+(n-1)X_1^n\\ =2X_1^n+(n-1)X_1^n\\=(n+1)X_1^n

示例:

D_n=\begin{vmatrix} 7&5 &0 &\cdots & 0 &0 \\ 2 &7 &5 &\cdots & 0& 0 \\ 0& 2&7 &\cdots &0 &0 \\ \vdots& \vdots & \vdots & \vdots& \ddots & \vdots \\ 0& 0& 0 & 2 &7 &5 \\ 0& 0 & 0& 0& 2& 7 \ \end{vmatrix}

设定a=5,b=7,c=2,生成公式x^2-bx+ac=0\rightarrow x^2-7x+2*5=0\rightarrow (x-2)(x-5)=0

所以x1不等于x2,x1=2,x2=5

代入D_n=\frac{X_2^{n+1}-X_1^{n+1}}{X_2-X_1}=\frac{5^{n+1}-2^{n+1}}{5-2}

范德蒙行列式
V_n=\begin{vmatrix} 1& 1 & \cdots &1 \\ x_1 &x_2 &\dots & x_n \\ x_1^2 &x_2^2 &\dots & x_n^2 \\ \vdots &\vdots & \ddots &\vdots\\ x_1^{n-1} &x_2^{n-1} &\dots & x_n^{n-1} \\ \end{vmatrix}=\coprod_{i<j}^{xj-xi}

  • 反对称行列式(奇数阶值等于0)、对称行列式

滚动相消法

D_n=\begin{vmatrix} 1 &2 & 3 & \cdots &n-2 &n-1 &n \\ 2 & 3 & 4& \cdots& n-1 & n &1 \\ 3&4 & 5 &\cdots &n &1 &2 \\ \vdots& \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ n-1 &n & 1 & \cdots &n-4 & n-3 &n-2 \\ n&1 & 2 &\cdots & n-3 &n-2 &n-1 \\ & & & & & & \end{vmatrix}

第一步:从最后一行,前一行乘以-1加到本行

D_n=\begin{vmatrix} 1 &2 & 3 & \cdots &n-2 &n-1 &n \\ 1 & 1 & 1& \cdots& 1 &1 &1-n \\ 1 & 1 & 1& \cdots& 1 &1-n &1 \\ \vdots& \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1-n& \cdots& 1 &1 &1 \\ 1 & 1-n & 1& \cdots& 1 &1 &1 & \end{vmatrix}

第二步:将第1列的-1倍一次加到其它列,行成爪型,按爪型求解

D_n=\begin{vmatrix} 1 &1 & 2 & \cdots & &n-1\\ 1 &0 & 0& \cdots & &-n\\ 1 &0 & -n& \cdots & &0\\ 1 &-n& 0& \cdots & &0\\ \end{vmatrix}

克莱姆法则

要求:n个未知数,n个方程、D(系数行列式)不等于0。x_j=\frac{D_j}{D}

D不等于0,如果奇次方程,只有0解。

示例:\left\{\begin{matrix} x_1+x_2+x_3=1\\ x_1-x_2+5x_3=6\\ -x_1+x_2+6x_3=9 \end{matrix}\right.

D=\begin{vmatrix} 1 &1 &1 \\ 1 &-1 &5 \\ -1 &1 &6 \end{vmatrix}\\ D_1=\begin{vmatrix} 1 &1 &1 \\ 6 &-1 &5 \\ 9 &1 &6 \end{vmatrix}, D_2=\begin{vmatrix} 1 &1 &1 \\ 1 &6 &5 \\ -1 &9 &6 \end{vmatrix}, D_3=\begin{vmatrix} 1 &1 &1 \\ 1 &-1 &6 \\ -1 &1 &9 \end{vmatrix},

矩阵

矩阵运算

加减法

同位置数字加减,需要同型矩阵

  • A+B=B+A

乘法

  • 矩阵*数k=矩阵所有元素*数k:矩阵所有元素都有公因子,公因子对外提一次
  • 矩阵*矩阵=A的行*B的列,对应元素相乘,最后相加。
  • 条件法则:中间相等,取两头
  • AB不一定等于BA,如果A*B=B*A 则,A、B可交换。
  • AB=AC,A不等于0,无法推出B=C。矩阵是没有消去律。
  • A*B=0 无法推出A或者B等于0。如果A的行全是0,B的列全是0,则A*B=0
  • 与单位矩阵E相乘,AE=A,EB=B
  • 结合率:(AB)C=A(BC)
  • 分配率:(A+B)*C=AC+BC ,C(A+B)=CA+CB
  •                 k(AB)=kA*B=A*(kB)

幂运算(只限方阵)

  • A的0次方,为单位阵E
  • A^{k1}*A^{k2}=A^{k1+k2}
  • (A^{k1})^{k2}=A^{k1*k2}
  • 一般 (AB)^k\neq A^k*B^k

特殊矩阵(方阵)

  • 单位矩阵:主对角线元素都是1,其它元素都为0
  • 数量矩阵:主对角线元素相等,其它元素都为0.0矩阵和单位阵都是特殊的数量矩阵
  • 对角矩阵:是一个主对角线之外的元素皆为0的矩阵。隐身含义,与单位和数量矩阵不同的地方是,他的对角线元素可以各不相同。主对角线元素a1,a2,a3,a4……an,其它元素都为0.写法:diag(a1,a2,a3,a4……an)。对角乘以对角,结果仍是对角。
  • 三角型:类型行列式。三角乘以三角,结果扔是原三角。
  • 对称:a_{ij}=a_{ji}。实对称矩阵都可以相似对角化,实对称矩阵和二次型一一对应。
  • 反对称:a_{ij}=-a_{ji} ,对角线元素都是0,A_{ij}=-A_{ji}, A^T=-A,奇数反对称行列式等于0。
  • 如果A和B是同阶对称矩阵,如果A*B依然是对称的充要条件是AB可交换
  • 正交矩阵:AA^T=A^TA=E(A^{-1}=A^T)。正交矩阵的行列式只能等于1或-1.本质是n个两两正交的单位向量拼成的。

重点矩阵

转置矩阵

  • (A^T)^T=A
  • \left (A+B+C \right ) ^{t}=A^{t}+B^{t}+C^{t}
  • (kA)^t=kA^t
  • \left (ABC \right ) ^{t}=C^{t}B^{t}A^{t}
  • \left | A^T \right |=\left | A \right |

伴随矩阵

只有方阵才有伴随矩阵

  • AA^\ast =A^\ast A=\left | A \right |E 
  • \left | A^* \right |=\left | A \right |^{n-1}
  • A^*=\left | A \right |A^{-1}
  • (A^*)^{-1}=(A^{-1})^*=\frac{1}{\left | A \right |}A
  • (A^*)^T=(A^T)^*
  • (kA)^*=k^{n-1}A^*
  • (A^*)^*=\left | A \right |^{n-2}
  • 如果A=(5),则A*=(1)

逆矩阵

注意不要把矩阵放到分母上

  • AB=BA=E
  • \left | A \right |=\left | A^T \right |:方阵的行列式(属性),方阵的行列式与方阵的转置行列式相等。也就是行列式的性质,行列式转置值不变。
  • \bigstar \bigstar \cdot k\left | A \right |=k^n\left | A \right |:n表示是几次方阵
  • 示例:A是5阶,\left | A \right |=3,\left | 2A^T \right |=2^5\left | A^T \right |=2^5\times 3
  • \left | AB \right |=\left | A \right |\left | B \right |:A*B的行列式等于A的行列式乘以B的行列式
  • 未必所有方阵都可逆,如果可逆,逆矩阵唯一,并且等列式不等于0.
  • AA^{-1}=A^{-1}A=E
  • 如果\left | A \right |\neq 0,非奇异非退货满秩
  • 可逆的充要条件:\left | A \right |\neq 0A^{-1}=\tfrac{1}{\left | A \right |}A^*
  • 推论:AB=E(BA=E),则A可逆
  • 如果A可逆,则A的逆矩阵可逆。(A^{-1})^{-1}=A
  • (A^n)^{-1}=(A^{-1})^n
  • (A^{-1})^T=(A^T)^{-1}
  • 如果AB都可逆,则AB可逆(AB)^{-1}=B^{-1}A^{-1}
  • 如果A可逆,A的转置可逆。(A^T)^{-1}=(A^{-1})^T,k\neq 0,(kA)^{-1}=\tfrac{1}{k}A^{-1}
  • 如果A可逆,\left | A^{-1} \right |=\left | A \right |^{-1}
  • 如果A可逆,A*可逆,(A^*)^{-1}=\frac{1}{\left | A \right |}A

初等变换

变换方法

  1. 交换两行
  2. 用k(k不等于0)乘以某一行
  3. 某一行的L倍加到另一行去,L可以是0行也可是列,初始变换不能用等号,他是一种变化

定理 

  • 定理1:左乘(EA)变行,右乘(AE)变列
    初等方阵:对单位阵E做一次实等变换得到的矩阵。初等方阵也有初等变换的3种方式。初等方阵是一个结果,初始变换是一个操作的过程。
  • 定理2:任意矩阵都可以通过初等变换化成标准矩阵。任意A经过有限次初等行(列)可以转化为标准型:P_s\cdots P1 \ast A\ast Q_1\cdots Q_t\Rightarrow E (E为标准型)

示例

三种初等方阵:原始如下.因为值不为0,所以:
(1)三种初等方阵都可逆(2)其逆矩阵也是初等方阵(3)初等方阵的转置也是初等方阵

原始单位阵\begin{bmatrix} 1 & & & \\ & 1& & \\ & & 1& \\ & & & 1 \end{bmatrix}
操作

A交换两行:13行交换

E_{(ij)}

B:某行乘以l

E_{(i(k))},k\neq 0

C:第三行5倍加到第一行

 E_{(i,j(l))}

结果\begin{bmatrix} & &1 & \\ & 1& & \\ 1& & & \\ & & & 1 \end{bmatrix}\begin{bmatrix} 1 & & & \\ & 1& & \\ & & 5& \\ & & & 1 \end{bmatrix}\begin{bmatrix} 1 & &5 & \\ & 1& & \\ & & 1& \\ & & & 1 \end{bmatrix}
行列式值-151
逆矩阵E_{(ij)}E_{(i(\frac{1}{k}))}E_{(i,j(-l))}

 分块矩阵

基本概念

  • 概念:用横线或竖线贯穿将矩阵分成若干子块,以这些子块生成的矩阵叫分块矩阵
  • 标准形:从左上角开始的一串1,不能断,其余地方全是0。它不一定是方阵。全是0也是。总结为:\begin{pmatrix} E_r &0 \\ 0& 0 \end{pmatrix}

运算法则

分块加法

对应元素相加

\begin{bmatrix} A_1 & A_2\\ A_3& A_4 \end{bmatrix}+\begin{bmatrix} B_1 &B_2\\ B_3& B_4 \end{bmatrix}= \begin{bmatrix} A_1 +B_1& A_2+B_2\\ A_3+B_3& A_4+B_4 \end{bmatrix}

分块与常数k

k*\begin{pmatrix} A1 & A2 & \\ A3& A4& \end{pmatrix}=\begin{pmatrix} kA1 & kA2 & \\ kA3& kA4& \end{pmatrix}

分块乘法

把分块当做元素,规则与元素相乘一样。保证前提是分出来的块符合矩阵可以相乘的原则

转置

把分块先当做普通元素转,然后对每个了块求转置

\begin{bmatrix} A &B \\ C & D \end{bmatrix}^T= \begin{bmatrix} A^T &C^T \\ B^T & D^T \end{bmatrix}

逆运算

\begin{bmatrix} B &O \\ O &C \end{bmatrix}^{-1}=\begin{bmatrix} B^{-1} &O \\ O &C^{-1} \end{bmatrix}\\ \begin{bmatrix} O&B \\ C&O \end{bmatrix}^{-1}=\begin{bmatrix} O &C^{-1} \\ B^{-1} &O \end{bmatrix}

幂运算

 \begin{bmatrix} B&O \\ O & C \end{bmatrix}^n= \begin{bmatrix} B^n&O \\ O & C ^n\end{bmatrix}

矩阵的迹

概念

设A是n阶方阵,则A的主对角线元素之各为矩阵的迹,记做tr(A)。只有方阵才有迹。

性质

矩阵相加减:tr(A\pm B)=tr(A) \pm tr(B)

tr(kA)=k\cdot tr(A)

tr(A^T)=tr(A)

tr(AB)=tr(BA)

若AB相似,则tr(A)=tr(B)

tr(AA^T)\geqslant 0,则A=0

秩和等价

概念
  • 秩:非零子式的最高阶数,符号为r,0矩阵的秩为0。A的秩=A的行秩=A的列秩。
  • 等价3种解释:
    由A经有限次初等变换得到B,A就等价于B。
    公式写法:存在可逆矩阵PQ,PAQ=B。
    形状相同,秩相等。
  • 矩阵等价和向量等价的区别
    向量:\alpha ,\beta等价,\alpha ,\beta能想到表示。r(\alpha)=r(\beta)=r(\alpha ,\beta )
    矩阵:AB等价,AB同型,秩相等。者没有关联

秩结论

  1.  若矩阵A_{m*n},r(A)<min\sqsubset m,n\sqsupset
  2. k \ne0,r(A)=r(kA)
  3. \forall A_{m\times n},r(A)=r(A^T)=r(AA^T)=r(A^TA)
  4. 拼接矩阵:max[r(A),r(B)]\leqslant r[A,B],r\begin{bmatrix} A\\ B \end{bmatrix}\leqslant r(A)+r(B)
  5. 分块矩阵:r\begin{pmatrix} A &O \\ O &B \end{pmatrix}=r(A)+r(B)

  6. AB积,小于AB中较小者。r(AB)\leqslant min[r(A),r(B)]

  7. r(A\pm B)\leqslant r(A)+r(B)

  8. A_{m*n},P_m为m阶可逆方阵,Q_n为n阶可逆方阵,则:
    r(A)=r(PA)=r(AQ)=r(PAQ)
    实际上可以理解为对A进行初等变换,实等变换不会改变秩。

  9. 若P为列满秩,r(PA)=r(A).若Q为行满秩,r(AQ)=r(A).
  10. A_{m\times n}B_{n \times}=O,则r(A)+r(B)\leqslant n
  11. r(A^*)=\left\{\begin{matrix} n,r(A)=n \\ 1,r(A)=n-1 \\ 0,r(A)<n-1 \end{matrix}\right.。举例解释。如果A的秩是n-1,则伴随是1
  12. r(A)+r(A^*)\leqslant n
  13. A的秩为r,有一个r阶子式不为0,r+1阶为0
  14. 如果A是方阵,并且满秩,则A可逆
  15. 矩阵*可逆矩阵,秩不变

等价结论

等价的性质:

  1. 反身性:A与自己等价 A\Leftrightarrow A
  2. 对称性:A如果B等价,B与A等价 A\Leftrightarrow B, B\Leftrightarrow A
  3. 传递性:A等价B,B等价C,则A等价于C, A\Leftrightarrow B,B\Leftrightarrow C,A\Leftrightarrow C
  4. 推论:如果A\Leftrightarrow B,则PAQ=B(如果AB等价,充要条件是存在可逆矩阵PQ,PAQ=B)

    A可逆,则A的标准型为单位阵E

    A可逆,A可以写成n个初始矩阵的乘积

向量

涉及概念

研究问题

  1. 相关性问题:向量组线性相关
  2. 代表性问题:级大线性无关组,向量组的秩
  3. 表示性问题:向量组等价
  4. 等价性问题:矩阵的我们的、矩阵等价

向量的模

\left | \left | \alpha \right | \right |=\sqrt{\alpha^T\alpha}=\sqrt{a_1^2+a_1^2+\cdots a_n^2}

运算法则

与矩阵的运算规律相同

向量内积

(\alpha,\beta)=\alpha^T\beta=\beta^T\alpha=a_1b_1+a_2b_2+ \cdots a_nb_n

内积也叫点乘或数量积

具有有交换律:\alpha^T\beta=\beta^T\alpha=(\alpha,\beta)=(\beta,\alpha)

具有分配律:(\alpha,k_1\beta_1+k_2\beta_2+ \cdots+k_n\beta_n)=k_1(\alpha,\beta_1)+k_2(\alpha,\beta_2)+ \cdots+k_n(\alpha,\beta_n)

备注:

如果一个向量模为0,则该向量为0向量。\alpha^T\alpha=0\Leftrightarrow a_1b_1+a_2b_2+ \cdots a_nb_n=0\Leftrightarrow \alpha=0

如果内积为0,则两个向量正交。(\alpha,\beta)=0\rightarrow \alpha \perp \beta

  • 向量:k \alpha =0,k=0 \quad or\quad \alpha=0,k=0 或者 \alpha=0

线性关系

基础概念

  • 线性组合:如果\beta =k_1\alpha_1+k_2\alpha_2+k_3\alpha_3+.....+k_n\alpha_n,则\beta\alpha的线性组合,k叫做组合系数。用\beta表示\alpha的线性组合,也叫线性表示。
  • 定理:
    (1)零向量可由任意向量表示
    (2)向量组中任意一个向量可由向量组表示
    (3)任意向量可由单位向量组表示
  • 向量等价:两个同组向量组可以相互线性表示(也可以理解为A或B里的任意一向量可由另一向量组表示)
  • 等价的向量组:(1)反身性,一个向量组和他自己是等价的(2)对称性:向量组A与B等价,则B与A等价(3)传递性:A等价B,B等价C,A等价C

线性相(无)关

定义

k_1\alpha_1+k_2\alpha_2+k_3\alpha_3+.....+k_n\alpha_n 是同维向量组,若k全不全为0则线性相关,反之线性无关。线性无关,实际上k全为0

结论
  1. 组中两个向量成比例,向量组一定线性相关。
  2. 含有0向量的向量组必线性相关
  3. 一个零相量必线性相关
  4. 一个非零线性必线性无关,也就是他的系统不等于0
定理
  • 如果\alpha_1 \alpha_2\alpha_3.....\alpha_n线性相关,则至少有一个向量可由其它向量表示。简单理解为,向量组中存在“多余向量”。
  • \alpha_1 \alpha_2\alpha_3.....\alpha_n线关,增加一个向量后,\alpha_1 \alpha_2\alpha_3.....\alpha_n\beta相关。\beta可用\alpha_1 \alpha_2\alpha_3.....\alpha_n唯一表示。若增加后依然无关,则不可以用新向量表示。
  • 部分组相关,整体组相关。整体组无关,部分也无关。部分相关,整体相关。
  • n个n维向量线性无关,其构成的行列式不为0。反之,n阶行列式不等于0,则构成n个向量线性无关。
  • n+1个n维向量,一定线性相关。
  • 针对向量组的维数,无关向量组,接长也无关。原来相关,截短也相关。
  • 正交非零向量必无关。
  • 替换定理:\alpha_1 \alpha_2\alpha_3.....\alpha_n无关,可由\beta _1\beta _2\beta _3....\beta _t线性表示,n<=t。逆否命题,如果A可由B表示,则n<t
  • 两个等价的线性无关组,含向量的个数是相关的。
  • n个n维向量构成的行列式值不等于0,则线性无关。等于0,就线性相关(本质 是方阵)。相关,有非0解。无关,只有非0解。

极大线性无关组和秩

基本概念
极大线性无关组

定义:(1)\alpha _1\alpha _2线性无关 (2)其它向量可由\alpha _1\alpha _2表示

求法:极大线性无关组的求法:(1)不管行还是列,只按列构成矩阵(2)做成行简化阶梯型(3)首非零所在列做成极大线性无关组(4) 其余向量表示系数直接写出来

推论:全是0的向量组没有极大线性相关组,线性无关的组极大线性无关组就是自己,任何一个向量组和他的极大线性无关组是等价的 

备注:向量组的极大线无关组不具备唯一性,这不同给的向量量个数总数是相关的。找极大线无关组的的过程,就是去除多余向量,筛选独立向量的过程。如果一个向量组已经线性无关了,那么极大线性无关组就是他本身。

向量组的秩

定义:极大线性无关组的个数

重要结论
  1. 向量组\alpha_1 \alpha_2\alpha_3.....\alpha_n线性相关,等价于r(\alpha_1,\alpha_2,\cdots,\alpha_n)<n
  2. 向量组\alpha_1 \alpha_2\alpha_3.....\alpha_n线性无关,等价于r(\alpha_1,\alpha_2,\cdots,\alpha_n)=n,满秩
  3. \beta可以被\alpha_1 \alpha_2\alpha_3.....\alpha_n线性表示,等价于r(\alpha_1,\alpha_2,\cdots,\alpha_n,\beta)=r(\alpha_1,\alpha_2,\cdots,\alpha_n)
  4. \beta不能被\alpha_1 \alpha_2\alpha_3.....\alpha_n线性表示,等价于r(\alpha_1,\alpha_2,\cdots,\alpha_n,\beta)=r(\alpha_1,\alpha_2,\cdots,\alpha_n)+1
  5. 矩阵初等行变换,不改变矩阵列向量的线性关系和表示系数
  6. 矩阵初等列变换,不改变矩阵行向量的线性关系和表示系数

向量等价

重要结论:

向量组X=\alpha_1,\alpha_2,\cdots,\alpha_s,向量组Y=\beta_1,\beta_2,\cdots,\beta_s

  1. 若X可由Y表示,则r(X)\leqslant r(Y)
  2. 若X可由Y表示,便Y不可以由X表示。则r(X)<r(Y)
  3. 若X可由Y表示,Y可以由X表示。则等价。r(X=r(Y)=r(X,Y)
  4. 若X可由Y表示,r(X=<r(Y),则X、Y等价
  5. 若X可由Y表示,且X中向量的个数大于Y中向量的个数。则X必定线性相关。以少表多,多必相关

方程组

概念

三种形式

  1. 普通形式:一个一个和写出来
  2. 矩阵形式:AX=\beta
  3. 向量形式:x_1\alpha_1+x_2\alpha_2\dots+x_n\alpha_n=\beta

其它概念

  1. 系数矩阵(略),记做A
  2. 增广矩阵(略) ,记做\overline{A}
  3. 方程组m、n 。m表示方程的个数,n表示未知量的个数

解的判定

综合结论

  1. r(A)=r(\overline{A})=n,唯一解
  2. r(A)=r(\overline{A})<n,无数解
  3. r(A)\ne (\overline{A}),无解

判断过程

  1. 写出r(A)
  2. 只行,化阶阶梯型 
  3. 判断r(A)r(\overline{A}),非0行的行数与带虚线的非0行的行数是否相等。相等有解。
  4. 不相等无解。化行简阶梯型,不管0行。非0行的首非0源留在左边。其余变量移动到右边,需要变号,得到一般解。

齐次方程组

简要

写法:AX=0

因为r(A)=r(\overline{A}),所以至少有0解。

定理
  1. 如果r(A)=n,仅有0解。
  2. 如果r(A)<n,无穷个解。
推论
  1. m<n,有非0解。也就n+1个n维向量一定线性相关。
  2. 方程个数等于未知数个数(方阵),有非0解的充要条件是,\left | A \right |=0,只有0解的充要条件\left | A \right |\neq 0。行列式不等于0,说明方阵可逆。推导过程:Ax=0。都乘以A^{-1}.变成x=0。
  3. 当A为列满秩的时,A在矩阵乘法中有左消去律。AB=0,可以推出B=0AB=AC,可以推出B=C
  4. 当A为列满秩的时,r(AB)=r(B)

非齐次方程组

简要

写法:AX=\beta

Ax=0叫做AX=\beta的导出组

定理
  1. 无解:r(A)\ne (\overline{A})
  2. r(A)=r(\overline{A})=n,唯一解
  3. r(A)=r(\overline{A})<n,无数解
推论
  1. (1)\alpha _1\alpha _2AX=\beta的解。则\alpha _1-\alpha _2AX=0的解。
    证明过程:A(\alpha _1-\alpha _1)=A\alpha _1-A\alpha _1=b-b=0=AX
  2. (2)\alpha _0AX=\beta的解。\etaAX=0的解。则\alpha _0+\etaAX=\beta的解
    证明过程:A(\alpha _0+\eta )=A\alpha _0+A\eta=b+0=b=AX+b

解的结构

概念

AX=\beta的解:

AX=\beta的一个特解+AX=0的基础解的线性组合

公式:\alpha _0+c_1\eta _1+c_2\eta _2+c_3\eta _3\cdots +c_{n-r}\eta _{n-r}

重要结论

结论1:齐次解的线性组和,仍是齐的解。

公式:设\xi_1,\xi_2,\cdots,\xi_sAX=0的解,则k_1\xi_1+k_2\xi_2+\dots+k_s\xi_s也是AX=0的解

示例:

\eta _1 \eta _2是Ax=0的解,则\eta _1 +\eta _2也是解。

推导过程:A(\eta _1 +\eta _2)=A\eta _1 +A\eta _2=0+0=0

结论2:齐的解+非齐的解=齐的解

公式:设\xi,\eta分别是AX=0,AX=\beta的解。则\xi+\eta一定是AX=\beta的解。

结论3:\xi_1,\xi_2,\cdots,\xi_sAX=0的基础解,则k_1\xi_1+k_2\xi_2+\dots+k_s\xi_sAX=0的通解。

结论4\eta是Ax=0的解,c\eta也是解。

推导过程:A(\eta _1 +\eta _2)=A\eta _1 +A\eta _2=0+0=0

基础解法

本质及条件

本质:

  1. 基础解其实就是极大线性无关组

条件:

  1. \xi_1,\xi_2,\cdots,\xi_sAX=0的解
  2. \xi_1,\xi_2,\cdots,\xi_s线性无关
  3. 基础解系包含的解的向量个数s=n-r(A)

步骤

  1. 做成系数矩阵,做成行简化阶梯
    A\rightarrow \begin{pmatrix} 1&0 &-\frac{4}{9} & -\frac{3}{4} & \frac{1}{4} \\ 0& 1&\frac{3}{4} & -\frac{7}{4} & \frac{5}{4} \\ 0& 0& 0 &0 &0 \end{pmatrix}
  2. 将非0移动到右边,生成自由未知量
     \left\{\begin{matrix}x_1=\frac{9}{4}x_3+\frac{3}{4}x_4-\frac{1}{4}x_5\\ x_2=-\frac{3}{4}x_3+\frac{7}{4}x_4-\frac{5}{4}x_5 \end{matrix}\right.
  3. (3)拼接原有系数组,将线性单位组合并。
    \begin{pmatrix} x_3\\ x_4\\ x_5 \end{pmatrix}=\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}
    得到:\eta _1=\begin{pmatrix} \frac{9}{4}\\ -\frac{3}{4}\\ 1\\ 0\\ 0 \end{pmatrix} \eta _2=\begin{pmatrix} \frac{3}{4}\\ -\frac{7}{4}\\ 0\\ 1\\ 0 \end{pmatrix} \eta _3=\begin{pmatrix} -\frac{1}{4}\\ -\frac{5}{4}\\ 0\\ 0\\ 1 \end{pmatrix}

得出结果:

(1)\eta _1\eta _2\eta _3线性无关

(2)任意解可由\eta _1\eta _2\eta _3表示

例题

如果A_{m\times n},B_{n\times s},AB= 0_{m\times s},证明r(A)+r(B)\leq n

解:

将B分块,B=\beta 1\beta 2\beta 3\cdots \beta s

AB=A(\beta 1\beta 2\beta 3\cdots \beta s)=A\beta 1A \beta 2A\beta 3\cdots A\beta s=(0,0,0\cdots0) \\

A\beta _i=0,所以\beta _iAX=0的解。

如果:

(1)r(A)=n,则\beta _i=0,唯一0解r(A)\leqslant n

(2)r(A)<n,有无穷个解,基础解系有n-r个,r(B)\leqslant n-r(A)\rightarrow r(A)+r(B)\leqslant n

特征值与特征向量

基本概念

内积

多个向量对应元素相乘再相加。内积是一个数。

示例

\alpha=(a_1,a_2,a_n)^T,\beta =(b_1,b_2,b_n)^T,(\alpha,\beta)=a_1b_1+a_2b_2+a_nb_n

也可以写成(\alpha,\beta)=a^T\beta,(\alpha,\beta)=a\beta ^T

后面的向量需要是列向量

性质
  1. (\alpha,\alpha)\geqslant 0,只有\alpha为0时,内积为0
  2. (\alpha,\beta)=(\beta,\alpha)
  3. (k \alpha,\beta)=(\alpha,k \beta)=k(\beta,\alpha)=k(\alpha,\beta)\\ (k \alpha,k\beta)=k^2(\alpha,\beta)\\
  4. (\alpha+\beta ,\gamma)=(\alpha, \gamma)+(\beta,\gamma)
  5. (\alpha,\beta+\gamma)=(\alpha, \beta)+(\alpha,\gamma)\\ (k_1\alpha+k_2\beta,\gamma)=k_1(\alpha,\gamma)+k_2(\beta,\gamma)\\ (\alpha,k_1\beta+k_2\gamma)=k_1(\alpha,\beta)+k_2(\alpha,\gamma)\\ (k_1\alpha_1+k_2\alpha_2,m_1\beta_1+m_2\beta_2)= k_1m_1(\alpha_1,\beta_1)+ k_1m_2(\alpha_1,\beta_2)+ k_2m_1(\alpha_2,\beta_1)+ k_2m_2(\alpha_2,\beta_2)+

长度(范数、模) 

概念

根下做内积。\left | \left |\alpha \right | \right |=\sqrt{(\alpha,\alpha)},(\alpha,\alpha)=\left | \left |\alpha \right | \right |^2

如果\left | \left |\alpha \right | \right |=1,就是单位向量。如果不是单位向量,可以进行单位化(标准化)\frac{1}{\left | \left | \alpha \right | \right |}

性质
  1. \left | \left |\alpha \right | \right |\geqslant 0,\alpha=0\rightarrow \left | \left |\alpha \right | \right |= 0
  2. \left | \left |k\alpha \right | \right |=\left | k \right |\left | \left |\alpha \right | \right |
  3. \left | (\alpha,\beta) \right |\leqslant \left | \left |\alpha \right | \right |\left | \left |\beta\right | \right |
  4. \left | \left |\alpha+\beta \right | \right |\leqslant \left | \left |\alpha \right | \right |+\left | \left |\beta\right | \right | 可以简单理解为三角型两条边之和大于第3条边。

单位化 

向量除以自己的模

特征值与特征向量

基本定义

特征定义:A是n阶方阵,若存在非零列向量\alphaA\alpha=\lambda \alpha,那么\lambda就是一个特征值,\alpha就是特征向量。\alpha不能为0,\lambda可是0。

\alpha是列向量

A_{n*n}*B_{n*1}=\alpha _{n*1} 由公式可以看出,需要得出的结果是n*1的矩阵,B只能是n*1

推导过程:

A\alpha=\lambda \alpha \rightarrow \lambda \alpha-A\alpha=0 \rightarrow \lambda{E} \alpha-A\alpha=0 \rightarrow (\lambda{E}-A )\alpha=0

因为E和A都是方阵,将之组成线性方程组(\lambda E-A)x=0 

因为x不等于0,那么这个线性方程组的非零解的充要条件是系数行列式等于零,所以只需要求\left |\lambda E-A \right |=0,这个行列式形成一个特征方程。

计算方法

  1. 先求所有的特征值,再计算每个特征值对应的特征向量
  2. 当A为具体矩阵时,就用\left |\lambda E-A \right |=0求特征值,用(\lambda E-A)x=0求很特征向量
  3. 当A为抽象矩阵时,就用定义A\alpha=\lambda \alpha

重要性质

  1. 矩阵A的所有特征值之和等于tr(A),征值之积\left | A \right |。可以推出,A的行列式不等于0,则A的特征值全不为0。
  2. 属于不同特征值的特征向量一定线性无关。\lambda _1\lambda _2\lambda _3\cdots \lambda _n对应的\alpha _1\alpha _2\alpha _3\cdots \alpha _n线性无关
  3. 互异的特征值\lambda _1\lambda _2\lambda _3\cdots \lambda _n对应的无关线性组,线性无关
    举例:特征值对应向量,\lambda_1对应线性无关\alpha_1\alpha_2
    \lambda _1\binom{\alpha_1}{\alpha_2}, \lambda _2\binom{\alpha_3}{}, \lambda _3 \bigl(\begin{smallmatrix} \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{smallmatrix}\bigr),则\alpha _1\alpha _2\alpha _3\alpha _4\alpha _5线性无关。
  4. k重特征根,对应的线性无关的特征向量的个数,不于等于k。n阶方阵线性无关的向量个数最
  5. k重特征值最多保有k个线性无关的特征向量
  6. 属于同一个特征值的特征向量的非零线性组合仍然是该特征值的特征向量

    示例1:

    \lambda是A的特征值,\alpha\lambda对应的特征向量,c\alpha也是特征向量(c\neq 0)

    一个特征值可以对应多个特征向量,但是一个特征向量,只能对应一个特征值。

    证明过程:

    \alpha(\alpha\neq 0)\lambda_{1}\lambda_{2}(\lambda_{1}\neq \lambda_{2})的特征向量,则A\alpha =\lambda _{1}\alpha =\lambda _{2}\alpha\rightarrow \lambda _{1}\alpha =\lambda _{2}\alpha \rightarrow (\lambda _{1}-\lambda _{2})\alpha=0,

    因为\alpha不是0,所以推出\lambda _{1}=\lambda _{2},与假设矛盾。

    示例2:

    \alpha _{1},\alpha _{2}\lambda的特征向量,则c_1\alpha _1+c_2\alpha _2\lambda的特征向量。

    A(c_1\alpha _1+c_1\alpha _1)=c_1A\alpha _1+c_1A\alpha _1=c_1\lambda \alpha _1+c_2\lambda \alpha _2=\lambda(c_1\alpha _1+c_2\alpha _2)

    c_1\alpha _1+c_2\alpha _2当天一个整体,可以看出来A\alpha=\lambda \alpha

  7. A的属于不同特征值的特征向量,他们的线性组合一定不是A的特征向量

  8. 若矩阵A满足多项式f(A)=0,则A的特征值也满足f(\lambda)=0
    如果f(A)=A^2-A=0.推出
    1.\lambda^2=\lambda\\ 2.A(A-E)=0,r(A+r(A-E)\leqslant n\\ 3.A(E-A)=0,r(A+r(E-A)\leqslant n

  9. 矩阵变换与特征值的关系

    矩阵AkA+EA+kEA^{-1}A^{*}A^{n}P^{-1}APA^T
    特征值\lambdak\lambda+1\lambda+k\frac{1}\lambda{}\frac{\left | A \right |}\lambda{}\lambda ^{n}\lambda\lambda
    特征向量\alpha\alpha\alpha\alpha\alpha\alpha\alpha不一定是\alpha

推论

  1. 三角型矩阵的特征值就是对角线
  2. 0矩阵性质:A=\bigl(\begin{smallmatrix} 0 &0 &0 \\ 0 &0 &0 \\ 0 &0 &0 \\ \end{smallmatrix}\bigr)的特征值是0,特征向量是\bigl(\begin{smallmatrix} 1\\ 0\\ 0 \end{smallmatrix}\bigr) \bigl(\begin{smallmatrix} 0\\ 1\\ 0 \end{smallmatrix}\bigr) \bigl(\begin{smallmatrix} 0\\ 0\\ 1 \end{smallmatrix}\bigr)
  3. AA^t有相同的特征值:
    证明过程:
    \left |\lambda E-A \right |=0,\left |\lambda E-A^T \right |=\left |\lambda E^T-A^T \right |=\left |(\lambda E-A)^T \right |=\left |\lambda E-A \right |
  4. 矩阵A的n个特征值是\lambda _1\lambda _2\lambda _3\cdots \lambda _n
    a)所有特征值之和等于主对角线元素之和:\sum_{i=1}^n\lambda_i=\sum_{i=1}^na_{ii}
    b)所有特征值相乘等于A的行列式:\lambda_1\lambda_2\cdots \lambda_n=\left | A \right |
    c)A可逆充要条件:特征根不能有0。其它条件:A的行列式不等于0,A的是满秩
  5. k\lambdakA的特征值,\lambda^2A^2的特征值,\lambda^kA^k的特征值
    示例:2是A的特征值,求A^5+6A^2+A+3E特征值
    解法:直接A替换为2,E替换是数字1,结果就是:2^5+6*2^2+2+3*1
  6. 如果\lambda是A的特征值,则\frac{1}{\lambda}A^{-1}(A逆)的特征值\frac{\left | A \right |}{\lambda}A^*的特征值。推论:
    (A^*)^*的特征是\lambda\left | A \right |^{n-2}
    例题:已知A为4阶方阵,\left | 3E+A \right |=0,AA^T=2E,\left | A \right |<0,求A^*的一个特征值
    解:根求特征值公式,\left | \lambda{E}-A\right |=0,推出:-1^{4}\left | -3E-A \right |=0,所以A的特征是-3
    \left| AA^T\right |=\left| A\right |\left| A^T\right |=\left| 2E\right |=2^4=16,x \rightarrow \left | A \right |=\pm 4,\left | A \right |=\pm 4
    因为\left | A \right |<0,所以\left | A \right |=-4
    所以A^*的特征值是4/3

相似与对称 

概念
相似矩阵

AB为n阶方阵,如果可以找到n阶可逆矩阵P,P^{-1}AP=B,A相似于B。记做A\sim B

A相似于对角型,则A可以对角化。

A有n个线性无关的特征向量。

三个性质 
  1. 反身性:E^{-1}AE=B
  2. 对称性:A\sim B\rightarrow B\sim A。推导过程:P^{-1}AP=B\rightarrow PP^{-1}AP=PB\rightarrow PP^{-1}APP^{-1}=PBP^{-1}\rightarrow A=P^{-1}BP\rightarrow A=(P^{-1})^{-1}BP^{-1}
  3. 传递性:A\sim B,B\sim C,A\sim C
    推导过程:
    P^{-1}AP=B,Q^{-1}BQ=C\rightarrow Q^{-1}P^{-1}APQ=C\rightarrow (PQ)^{-1}A(PQ)=C
 相似对角化

相似矩阵的其它性质

  1. A\sim B\rightarrow \left | A \right |=\left | B \right |,tr(A)=tr(B),
    推导过程:
    P^{-1}AP=B\\\left | B \right |=\left | \lambda E-B \right |=\left | \lambda E-P^{-1}AP \right |=\left | \lambda P^{-1}EP-P^{-1}AP \right |=\left | P^{-1} \right |\left | \lambda E-A \right |\left | P \right |
  2. A\sim B,A可逆则B可逆,A不可则B不可(原理,可以根据行列式的值是否为0进行推导)
  3. A\sim B\rightarrow A^m\sim B^m

相似对角化判定

具体类
  1. 看是不是实对称矩阵,如果是实对称矩阵,立即推可相似对角化,如果不是实对称矩阵,看下一步
  2. 求方阵的n个特征值,如果特征值彼此都不相同,也就是都是单根的话,立即推可相似对角化,如果有重根,看下一步
  3. 来验证k重根是不是具备k个线性无关的特征向量,也就是看\lambda E-A的秩是否等于n-k,若相等,立即推可相似对角化,不相等,则不能进行相似对角化。
抽象类

只要是要证明A可以相似对角化,就是考察特征值的重数和特征向量的个数。因为A可以相似对角化的充要条件是:所有k重特征值都对应有k个线性无关的特征向量。

快速判断可以相似对角化的几个类型

  1. n阶矩阵A有n个不同的特征值
  2. n阶矩阵A有n个无关的特征向量
  3. 矩阵A的每个k重特征值都有k个线性无关的特征向量
  4. 实对称矩阵一定可以相似对角化
  5. tr(A) \ne0的秩一矩阵A,一定可以相似对角化
  6. 对角阵一定可以相似对角化,且其特征值是对角线上的元素
例题:
例1


A=\begin{pmatrix} 3 &2 &-1 \\ -2&-2 &2 \\ 3&6 & -1 \end{pmatrix},求A是不是相似于对角型?P是什么,对角型是什么?

解:
(1)\left | \lambda E-A \right |=0,求出\lambda_1=\lambda_2=2,\lambda_3=-4

(2)当\lambda_1=4,求(\lambda_1 E-A)X=0,进行行简化阶梯型,得到解系:\alpha1=(\frac{1}{3},-\frac{2}{3},1)^T

(3)当\lambda_2=\lambda_3=2,求(\lambda E-A)X=0,进行行简化阶梯型,得到解系:\alpha2=(-2,1,0)^T,\alpha3=(1,0,1)^T

(4)P=\bigl(\begin{smallmatrix} \alpha _1\\\alpha _2 \\ \alpha _3 \end{smallmatrix}\bigr), \Lambda =\begin{pmatrix} \lambda1 & & \\ &\lambda2 & \\ & & \lambda3 \end{pmatrix},向量需要与特征值依次对应

例2

A为方阵,特征值为1,2,3,求A^{100},P和P逆

解:

P^{-1}AP=\Lambda ,(P^{-1}AP)^{100}=\Lambda^{100}\\ P^{-1}A^{100}P=\Lambda^{100}\\ A^{100}=P\Lambda^{100}P^{-1}

实对称矩阵的对角化

实对称矩阵性质
  1. 实对称矩阵的特征值全是实数。非实对称矩阵不满足该性质
  2. 实对称矩阵,取自不同的特征值和特征向量,不公无关,而且正交。
  3. 实对称矩阵一定可以相似对角化,且相似于特征值组成对角矩阵
  4. 一定可以经过施密特正交化、单位化,实现正交对角化
正交向量

两个向量的内积为0.(\alpha,\beta)=0,\alpha\perp\beta 。0向量与任何向量都正交。自身正交的向量只有0。

正交向量组

一个向量组里,两两都正交。但是不能有0向量。

如果向量组里的每个向量都是单位向量,这个组叫做标准正交向量组。

定理:如果\alpha_1\alpha_2\cdots \alpha_s是正交向量组,则该组线性无关。

 正交矩阵
定义

A是n阶方,A^TA=AA^T=E

A^T=A^{-1},则是正交矩阵 

性质
  1. A^TA=E\Rightarrow A^T=A^{-1}
  2. A^TA=E\Rightarrow \left | A \right |=\pm 1
    推导过程:\left | A^T\right |\left | A \right |=1, \left | A \right |^2=1
  3. A^TA=E\Rightarrow\lambda=\pm 1
  4. A^TA=E,Y=AX\Rightarrow \left | Y \right |=\left | X \right |
  5. A^{-1}=A^T,A^{-1}A^T均是正交矩阵
    AB=E,所以A^{-1}=A^T
    (A^{-1})^TA^{-1}=(A^{-1})^TA^T=(AA^{-1})^T=E,所以A^{-1}是正交矩阵
    (A^T)^TA^T=AA^T=AA^{-1}=E
  6. 如果A、B是n阶正交矩阵,则AB也是正交。推导过程:
    (AB)^TAB=B^TA^TAB=B^{-1}A^{-1}AB=E
  7. 如果A是正交矩阵,\alpha\beta是n维列向量,(A\alpha,A\beta)=(\alpha,\beta)
    推导过程,核心要点:内积的定义,最终都是一个行向量乘以列向量。所以A\alpha,A\beta的结果是一个列向量。行向量列向量相乘,就是内积的定义。(\alpha,\beta)=\alpha^T\beta
    (A\alpha,A\beta)=(A\alpha)^TA\beta=\alpha^TA^TA\beta=\alpha^T\beta=(\alpha,\beta)
定理
定理1

如果A是正交矩阵, A的列向量或者行向量组是标准正交向量组。
证明过程:利用分块矩阵,假设A的列向量是\alpha_1\alpha_2\cdots \alpha_n

A^TA=(\alpha_1\alpha_2\cdots \alpha_n)^T\alpha_1\alpha_2\cdots \alpha_n=\begin{pmatrix} \alpha_1^T\\ \alpha_2^T\\\cdots \\ \alpha_n^T \end{pmatrix} \alpha_1\alpha_2\cdots \alpha_n=\begin{pmatrix} \alpha_1^T\alpha_1 &\alpha_1^T\alpha_2 & &\alpha_1^T\alpha_n & \\ \cdots&\cdots&\cdots \\ \alpha_n^T\alpha_1 &\alpha_n^T\alpha_2 & &\alpha_n^T\alpha_n & \end{pmatrix}=\begin{pmatrix} (\alpha_1,\alpha_1) &(\alpha_1,\alpha_2) &(\alpha_1,\alpha_n) \\ &\cdots & \\ (\alpha_n,\alpha_1) &(\alpha_n,\alpha_2) & (\alpha_n,\alpha_n) \end{pmatrix}

因为A^TA=E,所以对角线的积是1:\begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \cdots& \\ & & & 1 \end{pmatrix},得出结论对角线上的内积为1,非对角线上的内积为0:\left\{\begin{matrix} (\alpha_i,\alpha_i))=\left | \left | \alpha_i \right | \right |=1\\ (\alpha_i,\alpha_j)=0 \end{matrix}\right.

例题1

三阶非0矩阵A,a_{ij}=A_{ij},求证\left | A \right |=1,A是正交矩阵

解:

A^*=\begin{pmatrix} A_{11} & A_{21} &A_{31} \\ A_{12} & A_{22} &A_{32} \\ A_{13} & A_{22} &A_{33} \\ \end{pmatrix}=\begin{pmatrix} a_{11} & a_{21} &a_{31} \\ a_{12} & a_{22} &a_{32} \\ a_{13} & a_{23} &a_{33} \\ \end{pmatrix}=A^T

因为AA^\ast =A^\ast A=\left | A \right |E,所以A^TA=A^*A=E,所以A是正交矩阵

因为A^*=\left | A \right |^{n-1}A\left | A \right |^{3-1} =\left | A \right |E,两边取行列式,\left | A \right |^2(\left | A \right |-1)=0

所以A为0或者1,因为A是正交矩阵,所以一定是可逆矩阵,所以行列式不等于0

定理2

实对称矩阵A的不同特征值的的特征向量正交
证明过程:

已知:

A^T=A,\lambda_1\neq \lambda_2,\left\{\begin{matrix} \lambda_1\rightarrow \alpha_1\\ \lambda_2\rightarrow \alpha_2\ \end{matrix}\right.

A\alpha_1=\lambda_1\alpha_1,A\alpha_2=\lambda_2\alpha_2\\ (A\alpha_1,\alpha_2)=(\lambda_1\alpha_1,\alpha_2)=\lambda_1(\alpha_1,\alpha_2)\\ (A\alpha_1,\alpha_2)=(A\alpha_1)^T\alpha_2=\alpha_1^TA\alpha_2=\alpha_1^T\lambda_2\alpha_2=\lambda_2(\alpha_1,\alpha_2)\\ (\lambda_1-\lambda_2)(\alpha_1,\alpha_2)=0

因为\lambda_1\neq \lambda_2,所以(\alpha_1,\alpha_2)=0,正交

施密特正交化

给一组线性无关的\alpha_1\alpha_2\cdots \alpha_s,与与之等价的正交\beta_1\beta_2\cdots \beta_s

\beta_1=\alpha_1\\ \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta1\\ \beta_3=\alpha_3-\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta1-\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta2

一般求解过程:先正交化,再进行单位化

正交相似

定义

存在P,P^{-1}AP=B

正交相似定义:正交矩阵P,P^{-1}AP=B

相似的一种情况 ,方阵A与方阵B相似是指存在可逆矩阵P,使得P^{-1}AP=B

方阵A与方阵B正交相似是指存在正交矩阵P,使得P^{-1}AP=B

正交阵P的含义是P^TP=PP^T=E

正交相似是相似的一种特例。因为正交,A^{-1}=A^T,所以正交相似,一定相似。所以正交相似也一定可以等于对角型。

Q^{-1}AQ=\Lambda =\begin{pmatrix} \lambda_1 & & \\ &\lambda\cdots & \\ & & \lambda_n \end{pmatrix}

求正交矩阵

概念

给实对称矩阵A,求正交Q。 

矩阵对角化两种情况:

1、如果有n个线性无关的特征向量:Q^{-1}AQ=\Lambda

2、如果没有,不对角化

实对称矩阵一定能对角化。

方法
要求

给实对称矩阵A。求正交Q、和对角矩阵

步骤
  1. 求特征值
  2. 求特征向量
  3. 正交化、单位化
  4. 做成列,构成Q
  5. 对角型为特征值
情况判定
情况1

都是单根

\lambda_1\lambda_2\lambda_3互异,分别对应向量\alpha_1\alpha_2\alpha_3,因为对称矩阵,已经正交,所以只需要做单位化。

\eta 1=\frac{1}{\left | \left | \alpha_1 \right | \right |}, \eta 2=\frac{1}{\left | \left | \alpha_2 \right | \right |}, \eta 3=\frac{1}{\left | \left | \alpha_3 \right | \right |}

Q=(\eta_1,\eta_2,\eta_3),Q^{-1}AQ=\Lambda =\begin{pmatrix} \lambda_1 & & \\ &\lambda_2 & \\ & & \lambda_3 \end{pmatrix}

情况2

有重根

\lambda_1=1,\lambda_2=\lambda_3=10,分别对应向量\alpha_1\alpha_2\alpha_3

\alpha_2\alpha_1,进行施密特正交化。

例题
例题1

A=\begin{pmatrix} 4 &4 &2 \\ -4 & 4 &-2 \\ 2& -2&1 \end{pmatrix},求正交矩阵

解:

1)求特征值:\left | \lambda E-A \right |= \begin{vmatrix} \lambda-4 &4 &-2 \\ 4& \lambda-4& 2\\ -2& 2 &\lambda-1 \end{vmatrix}\lambda_1=\lambda_2=0,\lambda_3=9

2)求特征向量:
\lambda_1=\lambda_2=0,求出特征向量\alpha_1,\alpha_2

3)将\alpha_1,\alpha_2施密特正交化得出\beta_1,\beta_2

4)将\beta_1,\beta_2单位化得\eta_1,\eta_2

\lambda_3=9,求出特征向量\alpha_3

直接将\alpha_3单位化,得出\eta_3

Q=(\eta_1,\eta_2,\eta_3),\Lambda =\begin{pmatrix} 0 & & \\ &0 & \\ & &9 \end{pmatrix}

例题2

三阶对称矩阵A,\lambda_1=6,\lambda_2=\lambda_3=3\lambda_1对应的\alpha_1=(1,1,1)^T,求A

解:假设\lambda_2对应的\alpha=(x_1,x_2,x_3)^T

因为正交向量内积为0.(\alpha_1,\alpha)=x_1+x_2+x_3=0 

令自由未知量为x_2,x_3,则\alpha_2=(-1,1,0)^T,\alpha_3=(-1,0,1)^T

P=(\alpha_1,\alpha_2,\alpha_3),P^{-1}AP=\Lambda \rightarrow A=P\Lambda P^{-1}

二次型

二次型的背景

从代数学上看,将二次型的普通多项式化为标准型的过程,是通过线性换元消去交叉项,保留平方项。从而简化该二次齐次多项式的过程。总之,将二次型化为标准型,总结起来就是:干掉交叉项。

二次型定义

一般形式

含有n个变量的x_1,x_2,\dots,x_n的二次齐次函数,称为n元二次型

f(x_1,x_2,\cdots,x_n)=\\a_{11}x_1^2+a_{22}x_2^2+\cdots+a_{nn}x_n^2+\\ 2a_{12}x_1x_2+2a_{13}x_1x_3+\cdots+2a_{1n}x_1x_n+\\ 2a_{23}x_2x_3+\cdots+2a_{2n}x_2x_n+\\ \cdots \cdots+ 2a_{n-1},x_{n-1}x_n

矩阵形式

公式表达

f(x_1,x_2,\cdots,x_n)=X^TAX

x=(x_1,x_2,\cdots,x_n),A=\bigl(\begin{smallmatrix} a_{11} &\cdots &a_{1n} \\ \vdots& \ddots &\vdots \\ a_{n1}& \cdots& a_{nn} \end{smallmatrix}\bigr)

规定a_{ij}=a_{ji},即A为实对称矩阵,则称f(x_1,x_2,\cdots,x_n)=X^TAX是二次型的矩阵表示,其中,对称矩阵A称为该二次型对应的矩阵称r(A)为该二次型的秩。

二次型化矩阵
  1. 平方项直接做成主对角线元素
  2. 交叉项的系数除以2放到两个对称的位置相应位置

示例:x_1^2+2x_1x_2+x_2^2-x_2x_3+3x_3^2-2x_1x_3\rightarrow (x_1,x_2,x_3)\begin{pmatrix} 1 &1 & -1\\ 1 & 1& -\frac{1}{2}\\ -1 & -\frac{1}{2}& 2 \end{pmatrix}(x_1,x_2,x_3)^T 

写为:X^TAX

二次型的矩阵一定是对称的,所以A^T=A

矩阵化二次型

主对解线元素直接做为平方项的系数

取主对角线右上角元素乘以2做为交叉项的系数

\begin{pmatrix} 1 &0 & -1\\ 0 & 2& -\frac{1}{2}\\ -1 & -\frac{1}{2}& 3\end{pmatrix} \mapsto x_1^2+2x_2^2+3x_3^2+-2x_1x_3-x_2x_3

其它概念

标准型

d_1y_1^2+d_2y_2^2+\cdots +d_ny_n^2

只有平方项,没有交叉项。dn可以取0。标准型对应的矩阵称为对角矩阵。

线性替换
方法

f(x)=X^TAX

引入线性替换,令X=CY

f(x)=X^TAX=(CY)^TA(CY)=Y^T(C^TAC)Y

B=C^TAC,因为标准型只有平方项,B=\begin{pmatrix} d_1 & & \\ & d_2& \\ & & d_n \end{pmatrix}

如果C的行列式不等于0,叫做可逆(非退化,满秩)替换

同时B也是对称的:

B^T=(C^TAC)^T=C^TA^TC=B

为什么用可逆的线性变换
  1. 线性替换原因:只有线性变换x=Py(或y=Px)才能交接这种二次型变成另一种二次型,从而保证研究对象在形式上是不变的,有利于研究
  2. 可逆原因:当P可逆时,方程组有唯一解,且对于任意给定的x均可确定出唯一的y。对于任意给定的y也可以确定出唯一的x,二次一一对应。如果P不可逆,则方程组x=Py(或y=Px)要么无解,要么有无穷多解,从几何意义上来看,相当于标准型中某个坐标点在原二次型中要么没有点可以与之对应,要么有无数个点与之对应,那么标准型中的信息就无法反馈到原二次型上,所以这样的换元就是无效换元
特殊情况

两次替换

X=C_1Y,Y=C_2Z,X=C_1C_2Z

f(x)=(C_1C_2Z)^TA(C_1C_2Z)=(Z^TC_2^TC_1^T)A(C_1C_2Z)=Z^T(C_2^TC_1^T)A(C_1C_2Z)=Z^T(C_1C_2)^TA(C_1C_2)Z

二次型化标准型

配方法

  1. 一次只配一个变量,要配干净。先从x1,再x2...x3。使用过的x1,后面不能再使用x2
  2. 原来的二次型 有几个变量,换元之后也应该有几个变量,不公多也不会少
  3. 本配方法化为标准型以后,平方项前的系数不一定是特征值
示例
示例1

有平方项和交叉项

x_1^2-3x_2^2+4x_3^2-2x_1x_2+2x_1x_3-6x_2x_3=\\ \left \{ x1^2-2x_1(x_2-x_3) \right \}-3x_2^2+4x_3^2-6x_2x_3=\\ \left \{ x1^2-2x_1(x_2-x_3)+(x_2-x_3)^2 \right \}-(x_2-x_3)^2-3x_2^2+4x_3^2-6x_2x_3=\\ (x_1-x_2+x_3)^2-4x_2^2-4x_2x_3+3x_3^2=\\ (x_1-x_2+x_3)^2-(4x_2^2+4x_2x_3+x_3^2)+x_3^2+3x_3^2=\\ (x_1-x_2+x_3)^2-(2x_2+x_3)^2+x_3^2+3x_3^2=\\ (x_1-x_2+x_3)^2-(2x_2+x_3)^2+4x_3^2=\\ y_1^2-y_2^2+4y_3^2

\left\{\begin{array}{l} y_1=x_1-x_2+x_3 \\ y_2=2x_2+x_3 \\ y_3=x_3 \end{array}\right. \rightarrow X=CY\rightarrow \left\{\begin{array}{l} x_1=...y \\ x_2=...y \\ x_3=...y \end{array}\right.

示例2

只有交叉项

2x_1x_2-4x_1x_3+10x_2x_3+5x_3x_4+x_1x_4

\left\{\begin{array}{l} x_1=y_1-y_2 \\ x_2=y_1+y_2 \\ x_3=y_3 \\x_4=y_4\end{array}\right.,得到平方项

初等变化法

方法 

f(x)=X^TAX,X=CY,C^TAC=\Lambda\\ C?,\Lambda ?

\bigl(\begin{smallmatrix} A\\ E \end{smallmatrix}\bigr) \rightarrow \bigl(\begin{smallmatrix} \Lambda \\ C \end{smallmatrix}\bigr) 

  1. 对A和E做同样的初等列变换
  2. 只对A做相应的初等行变换
  3. A化成对角阵时,E化成的就是C
示例

示例1:

A=\begin{pmatrix} 1 &1 &1 \\ 1& 2 &2 \\ 1& 2 &1 \end{pmatrix}, \begin{pmatrix} A\\ E \end{pmatrix}=\begin{pmatrix} 1 &1 &1 \\ 1& 2 &2 \\ 1& 2 &1 \\ 1& 0&0 \\ 0& 1 &0 \\ 0& 0 &1 \end{pmatrix}

第一步:第一列乘以-1加到第二列

\begin{pmatrix} 1 &1 &1 \\ 1& 2 &2 \\ 1& 2 &1 \\ 1& 0&0 \\ 0& 1 &0 \\ 0& 0 &1 \end {pmatrix}\xrightarrow[]{C_1*-1\rightarrow C_2} \begin{pmatrix} 1 &0 &1 \\ 1& 1 &2 \\ 1& 1 &1 \\ 1& -1&0 \\ 0& 1 &0 \\ 0& 0 &1 \end{pmatrix} \xrightarrow[]{R_1*-1\rightarrow R_2} \begin{pmatrix} 1 &0 &1 \\ 0& 1 &1 \\ 1& 1 &1 \\ 1& -1&0 \\ 0& 1 &0 \\ 0& 0 &1 \end{pmatrix} \xrightarrow[]{C_1*-1\rightarrow C_3} \begin{pmatrix} 1 &0 &0 \\ 0& 1 &1 \\ 1& 1 &0 \\ 1& -1&-1 \\ 0& 1 &0 \\ 0& 0 &1 \end{pmatrix} \xrightarrow[]{R_1*-1\rightarrow R_3} \begin{pmatrix} 1 &0 &0 \\ 0& 1 &1 \\ 0& 1 &0 \\ 1& -1&-1 \\ 0& 1 &0 \\ 0& 0 &1 \end{pmatrix} \xrightarrow[]{C_2*-1\rightarrow C_3} \begin{pmatrix} 1 &0 &0 \\ 0& 1 &0 \\ 0& 1 &-1 \\ 1& -1&0 \\ 0& 1 &-1 \\ 0& 0 &1 \end{pmatrix} \xrightarrow[]{R_2*-1\rightarrow R_3} \begin{pmatrix} 1 &0 &0 \\ 0& 1 &0 \\ 0& 0 &-1 \\ \cdots&\cdots&\cdots\\ 1& -1&0 \\ 0& 1 &-1 \\ 0& 0 &1 \end{pmatrix}= \begin{pmatrix} \Lambda \\ C \end{pmatrix}

正交替换

步骤
  1. 根据二次型f(x_1,x_2,\cdots,x_n)写出对应的实对称矩阵A
  2. 求正交矩阵Q,使得Q^TAQ=\Lambda
  3. 得结论:做正交替换X=QY,则二次型化为标准型f(y_1,y_2,y_3)=\lambda_1y_1^2+\lambda_2y_2^2+\lambda_3y_3^2
备注
  1. 由于任何一个实对称矩阵都一怀个对角矩阵合同,所以任何一个实二次型都可以通过可逆的线性变换为标准型
  2. 利用正交化替换将二次型化为标准型后,标准型里平方项前的系数就是A的特征值,而通过其它的方法化为标准型后,那睦标准型中的平方项前的系数就不一定是A的特征值了

惯性定理

规范型

y_1^2+y_p^2-y_{p+1}^2-y_r^2

按1、-1、0一次排序(非零系数为1和-1)的标准型。规范型的秩=1加-1的总数,等于原矩阵的秩

不管怎么化,1,-1,0的数量不会变。

任意给定的二次型,虽然标准型并不唯一,但是规范型一定是唯一的。

惯性指数

规范型里,1的数量叫正惯性指数,-1的数量叫负惯性指数

符号差=正惯性指数-负惯性指数

定理

任意一个矩阵与规范型合同。有相同的秩、正负惯性指数。

解释:对于任何给定的二次型,虽然其标准型并不唯一,比如正交替换和配方法得到的标准型往往不一样,但在不同的标准型中,非零系数的个数,正系数的个数,负系数的个数均保持不变。分别称为该二次型的惯性指数r(秩)、正惯性指数p,负惯性指数q,该性质被称为“惯性定理”。

有定性

概念
前提:x\neq 0,f(x1,x2,x3)=d_1x_1^2+d_2x_2^2+d_3x_3^2
名称公式
正定x_1^2+x_2^2+x_3^2f>0
半正定x_1^2+x_2^2+0\cdot x_3^2f\geqslant 0
负定-x_1^2-x_2^2-x_3^2f< 0
半负定-x_1^2-x_2^2-0\cdot x_3^2f\leqslant 0

定理

  1. 正定二次型经过线性替换,仍是正定。
    证明:f(x)=X^TAX,X=CY,C是可逆的。
    f(x)=X^TAX=Y^TC^TACY
    Y不等于0,X不等于0,所以f(X)>0
  2. f(x)=X^TAX是正定的充要条件是:
    1)d_1y_1^2+d_2y_2^2+\cdots +d_ny_n^2d_i>0
    2)正惯性指数是n
    3)A与单位阵合同
    可以推导出:
    1)行列式\left | A \right |>0 
    2)n个特征值都大于0
  3. 如果A是正定,A逆也是正定。
    证明:因为A正定,那么A的特征值全大于0,A逆的特征值是A的倒数,所以大于0
  4. 如果A是正定,A伴随也是正定。 
  5. 如果A是正定,A的k次方也是正定。
  6. 如果A是正定,B也是正定。那么A+B也是正定。
  7. 如果A是正定,A的主对角线元素都大于0

顺序主子式

定理:各阶顺序主子式都大于0

f(x_1,x_2,x_3)=2x_1^2+2x_1x_2+x_2^2+x_3^2

生成矩阵:\begin{pmatrix} 2 & 1& 0\\ 1&1 &0 \\ 0&0 &1 \end{pmatrix}

一阶主子式二阶主子式三阶主子式
\left | 2 \right |>0\begin{vmatrix} 2&1 \\1 &1 \end{vmatrix}=1>0\begin{vmatrix} 2 &1 & 0\\ 1 &1 &0 \\ 0 &0 & 1 \end{vmatrix}=1>0

正定二次型与正定矩阵

定义

对于二次型f=X^TAX,若对任意的X \ne0,恒有X^TAX>0(即,要想X^TAX=0,除非X=0),则称该二次型f=X^TAX为正定二次型,并将该二次型对应 的矩阵A为正定矩阵。

判定方法
六大充分必要条件
  1. 对于任意的X \ne0,恒有X^TAX>0
  2. A的特征值均大于0
  3. A的正惯性指数p=n
  4. A与单位矩阵E合同(即存在可逆矩阵P,使得P^TAP=E
  5. A的全部顺序主子式均大于0
两个必要条件
  1. a_{ii}>0(i=1,2,3,\cdots,n)
  2. \left | A \right |>0
经验

只要是给出了具体的二次型,就把二次型的矩阵写出来,用顺序主子式均大于0这个充要条件判断是最快的

合同

概念
合同

AB是两个n阶方阵,如果,如果存在可逆矩阵C。C^TAC=B。则AB合同。
假设某二次型在进行可逆线性变换前后所对应的矩阵分别和A,B,则A,B一定合同

合同对角化

如果存在可逆矩阵C。C^TAC=\Lambda

性质

  1. 反身性。A\simeq AE^TAE=A
  2. 对称性:A\simeq B\rightarrow A\simeq B。证明:C^TAC=B,A=(C^T)^{-1}BC^{-1}=(C^{-1})^TBC^{-1}
  3. 传递性:A\simeq B, B\simeq C\rightarrow A\simeq C,证明:P_1^TAP_1=B,P_2^TBP_2=C,P_2^TP_1^TAP_1P_2=C,P_1P_2)^TA(P_1P_2)=C
  4. A\simeq B\rightarrow r(A)=r(B),秩相等
  5. A\simeq B,A^T=A\Leftrightarrow B^T=B。如果A可逆,B也可逆。如果A不可,B也不可。
  6. A\simeq B\rightarrow A^{-1}\simeq B^{-1}
  7. A\simeq B\rightarrow A^{T}\simeq B^{T}

判定方法

对于实对称矩阵A,B,A与B合同的充要条件是A,B的正负惯性指数完全相同

  1. 上述定理由惯性定理所保证,因为一但AB的正负惯性指数对应相等,那么根据合同的传递性,就可以得出AB合同
  2. 对称矩阵与非对称矩阵一定不可能合同,与对称矩阵的合同矩阵一定是对称矩阵
  3. 实对称矩阵A的正惯性指数就是他的正负特征个数
  4. 两个实对称矩阵合同的充要条件是他们的正负特征值的个数完全相同

性质对比 

类型概念公式
等价AB同型,存在可逆矩阵PQ,PAQ=B
相似如果AB同阶方阵,如果存在可逆矩阵PP^{-1}AP=B
正交相似如果AB同阶方阵,如果存在正交矩阵PP^{-1}AP=B
合同如果AB同阶方阵,如果存在可逆矩阵PP^TAP=B

正交相似,一定相似。因为正交,所以P^T=P^{-1}。所以正交相似,也是合同。也是等价。

相似、合同,一定是等价。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值