次对角线行列式的计算

本文介绍了次对角线行列式的定义,并通过详细步骤证明了一个特殊的n阶次对角线行列式的值,涉及到行列式的交换和上三角形行列式的性质。最终得出结论:n阶次对角线行列式等于(-1)^(21n(n-1)) * b1*b2*...*bn。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

  1. 行列式次对角线:设 n n n阶行列式
    ∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ , \left| A \right|=\left| \begin{matrix} { {a}_{11}} & { {a}_{12}} & \cdots & { {a}_{1n}} \\ { {a}_{21}} & { {a}_{22}} & \cdots & { {a}_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ { {a}_{n1}} & { {a}_{n2}} & \cdots & { {a}_{nn}} \\ \end{matrix} \right|, A=a11a21an1a12a22an2a1na2nann,
    则元素 a 1 n ,   a 2 , n − 1 ,   ⋯   ,   a j , n − j ,   ⋯   ,   a n − 1 ,   2 ,   a n 1 { {a}_{1n}},\text{ }{ {a}_{2,n-1}},\text{ }\cdots ,\text{ }{ {a}_{j,n-j}},\text{ }\cdots ,\text{ }{ {a}_{n-1,\text{ }2}},\text{ }{ {a}_{n1}} a1n, a2,n1, , aj,nj, , an1, 2, an1所在的这条线称为行列式 ∣ A ∣ \left| A \right| A的次对角线。

  2. 次对角线行列式:次对角线元素不全为零,其余元素全为零的行列式。

题目

  求证: n n n阶行列式 ∣ 0 0 ⋯ 0 b 1 0 0 ⋯ b 2 0 ⋮ ⋮ ⋮ ⋮ 0 b n − 1 ⋯ 0 0 b n 0 ⋯ 0 0 ∣ = ( − 1 ) 1 2 n ( n − 1 ) b 1 b 2 ⋯ b n . \left| \begin{matrix} 0 & 0 & \cdots & 0 & { {b}_{1}} \\ 0 & 0 & \cdots & { {b}_{2}} & 0 \\ \vdots & \vdots & {} & \vdots & \vdots \\ 0 & { {b}_{n-1}} & \cdots & 0 & 0 \\ { {b}_{n}} & 0 & \cdots & 0 & 0 \\\end{matrix} \right|={ {\left( -1 \right)}^{\frac{1}{2}n\left( n-1 \right)}}{ {b}_{1}}{ {b}_{2}}\cdots { {b}_{n}}. 000bn00bn100b200b1000=(1)21n(n1)b1b2bn.

证明

  1. 先将行列式中 ( b 1 , 0 , 0 , ⋯   , 0 ) T { {\left( { {b}_{1}},0,0,\cdots ,0 \right)}^{T}} (b1,0,0,,0)T一列一步步交换到第 1 1 1列的位置:
    ∣ A 1 ∣ : = ∣ 0 0 ⋯ 0 0 b 1 0 0 ⋯ 0 b 2 0 0 0 ⋯ b 3 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 b n − 1 ⋯ 0 0 0 b n 0 ⋯ 0 0 0 ∣ → ∣ 0 0 ⋯ 0 b 1 0 0 0 ⋯ 0 0 b 2 0 0 ⋯ b 3 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 b n − 1 ⋯ 0 0 0 b n 0 ⋯ 0 0 0 ∣ → ∣ 0 0 ⋯ b 1 0 0 0 0 ⋯ 0 0 b 2 0 0 ⋯ 0 b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值