定义
-
行列式次对角线:设 n n n阶行列式
∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ , \left| A \right|=\left| \begin{matrix} { {a}_{11}} & { {a}_{12}} & \cdots & { {a}_{1n}} \\ { {a}_{21}} & { {a}_{22}} & \cdots & { {a}_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ { {a}_{n1}} & { {a}_{n2}} & \cdots & { {a}_{nn}} \\ \end{matrix} \right|, ∣A∣=∣∣∣∣∣∣∣∣∣a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann∣∣∣∣∣∣∣∣∣,
则元素 a 1 n , a 2 , n − 1 , ⋯ , a j , n − j , ⋯ , a n − 1 , 2 , a n 1 { {a}_{1n}},\text{ }{ {a}_{2,n-1}},\text{ }\cdots ,\text{ }{ {a}_{j,n-j}},\text{ }\cdots ,\text{ }{ {a}_{n-1,\text{ }2}},\text{ }{ {a}_{n1}} a1n, a2,n−1, ⋯, aj,n−j, ⋯, an−1, 2, an1所在的这条线称为行列式 ∣ A ∣ \left| A \right| ∣A∣的次对角线。 -
次对角线行列式:次对角线元素不全为零,其余元素全为零的行列式。
题目
求证: n n n阶行列式 ∣ 0 0 ⋯ 0 b 1 0 0 ⋯ b 2 0 ⋮ ⋮ ⋮ ⋮ 0 b n − 1 ⋯ 0 0 b n 0 ⋯ 0 0 ∣ = ( − 1 ) 1 2 n ( n − 1 ) b 1 b 2 ⋯ b n . \left| \begin{matrix} 0 & 0 & \cdots & 0 & { {b}_{1}} \\ 0 & 0 & \cdots & { {b}_{2}} & 0 \\ \vdots & \vdots & {} & \vdots & \vdots \\ 0 & { {b}_{n-1}} & \cdots & 0 & 0 \\ { {b}_{n}} & 0 & \cdots & 0 & 0 \\\end{matrix} \right|={ {\left( -1 \right)}^{\frac{1}{2}n\left( n-1 \right)}}{ {b}_{1}}{ {b}_{2}}\cdots { {b}_{n}}. ∣∣∣∣∣∣∣∣∣∣∣00⋮0bn00⋮bn−10⋯⋯⋯⋯0b2⋮00b10⋮00∣∣∣∣∣∣∣∣∣∣∣=(−1)21n(n−1)b1b2⋯bn.
证明
- 先将行列式中 ( b 1 , 0 , 0 , ⋯ , 0 ) T {
{\left( {
{b}_{1}},0,0,\cdots ,0 \right)}^{T}} (b1,0,0,⋯,0)T一列一步步交换到第 1 1 1列的位置:
∣ A 1 ∣ : = ∣ 0 0 ⋯ 0 0 b 1 0 0 ⋯ 0 b 2 0 0 0 ⋯ b 3 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 b n − 1 ⋯ 0 0 0 b n 0 ⋯ 0 0 0 ∣ → ∣ 0 0 ⋯ 0 b 1 0 0 0 ⋯ 0 0 b 2 0 0 ⋯ b 3 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 b n − 1 ⋯ 0 0 0 b n 0 ⋯ 0 0 0 ∣ → ∣ 0 0 ⋯ b 1 0 0 0 0 ⋯ 0 0 b 2 0 0 ⋯ 0 b