21 | 机器学习中常见距离度量及实现

本文介绍了机器学习中常见的距离度量方法,包括欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、标准化欧式距离、马氏距离、余弦距离、皮尔逊相关系数、汉明距离、杰卡德相似系数、布雷柯蒂斯距离和编辑距离。每种距离度量都有其适用场景和优缺点,并提供了相应的Python实现。

机器学习中常见距离度量及python实现

1. 欧式距离

欧式距离是最易于理解的一种距离计算方法,源自欧式空间中两点间的距离公式。

  • 二维平面上两点a(x1, y1)b(x2, y2)间的欧式距离

d 12 = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 2 d_{12} =\sqrt [ 2 ]{ (x_1-x_2)^2+(y_1-y_2)^2 } d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小刘要努力。

顺便点一个赞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值