文本分类实战(上)

本文介绍了进行文本分类的实践过程,包括使用词袋模型将文本转化为数字,应用逻辑回归得到0.796的准确率。在面对精确度不足的问题时,尝试引入神经网络,但出现过拟合。最后讨论了如何利用Word Embeddings改善模型效果。
摘要由CSDN通过智能技术生成

数据集介绍

在这里插入图片描述

在这里插入图片描述

其中0表示消极,1表示积极,主要处理 ‘data/yelp_labelled.txt’, ‘data/amazon_cells_labelled.txt’, ‘data/imdb_labelled.txt’

import pandas as pd
"""
数据读取,其中0表示消极,1表示积极,合并数据集
"""
filepath_dict = {'yelp':   'data/yelp_labelled.txt',
                 'amazon': 'data/amazon_cells_labelled.txt',
                 'imdb':   'data/imdb_labelled.txt'}

df_list = []
for source, filepath in filepath_dict.items():
    df = pd.read_csv(filepath, n
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小刘要努力。

顺便点一个赞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值