基于时间序列网络TCN的极化码译码

1 篇文章 0 订阅
1 篇文章 0 订阅

基于时间序列网络的极化码译码算法

核心思路

首先生成大量的极化码编码数据,将编码前的数据作为标签
再设计TCN网络结构,针对译码对结构进行微调
最后对译码效果进行多方面评估,画出误码率曲线以及对参数进行调整获取最佳结果

细节问题

一些细节问题以及怎么解决的

第一点 生成什么样的数据,数据结构是什么样?
第二点 怎么对数据进行标注,标注样式是什么?
第三点 获取不同信噪比下的表现,是每个信噪比训练一个模型还是混合信噪比训练?
第四点 生成数据集的规模是多大的?数据是越多越好?
第五点 如果效果不好,数据应该怎么调整?
第五点 网络结构是什么样的?超参数怎么设置?
第六点 怎么对效果进行评估,怎么计算误码率曲线?

数据集生成

  1. 首先是极化码的编码,随机生成一个数据源
  2. 再对数据源进行计划码编码,生成编码后的数据
  3. 对编码后的数据添加噪声
  4. 对加噪数据进行标注,标注内容是信噪比和数据源
  5. 重复以上步骤,生成足够的数据

TCN网络

在这里插入图片描述
扩张因果卷积,扩张因子d = 1,2,4,滤波器大小k = 3。接收域能够覆盖输入序列中的所有值。
TCN的卷积和普通1D卷积最大的不同就是用了扩张卷积(dilated convolutions),越到上层,卷积窗口越大,而卷积窗口中的“空洞”越多。

  1. 网络输入x0, . . . , xT 的时序数据,输出也是一样大小的 y0, . . . , yT 的预测。扩张卷积可以做到每一层隐层都和输入序列大小一样,并且计算量降低,感受野足够大。

  2. 时序预测要求对时刻t 的预测yt只能通过t时刻之前的输入x1到xt-1来判别(像隐马尔科夫链)。这在CNN里面就叫做因果卷积(causalconvolutions),这是通过限制卷积窗口滑动做到的。
    在这里插入图片描述
    TCN还为了提高准确率,还加入了残差卷积的跳层连接,以及1×1的卷积操作:
    在这里插入图片描述
    TCN中残差连接的示例。蓝线是残差函数中的过滤器,绿线是身份映射。可以看出TCN 只是一维CNN的一个结构创新。

译码效果

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扬花知冷暖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值