图像去模糊算法研究调研

传统的图像去模糊算法研究

针对图像去模糊处理的研究,可以追溯到上世纪五六十年代,在传统上来说,一般都是采用数字图像处理领域中的方法。而根据模糊核是否已知,图像去模糊算法可以分为两类:非盲去模糊算法(Non-blind Deblurring)和盲去模糊算法(Blind Deblurring )。而在非盲去模糊算法中最早出现的是逆滤波,或者叫做直接去卷积,该方法主要是在忽略噪声影响的前提下,直接采用反卷积运算来去除图像的模糊,但在实际情况中,噪声对图像的影响是不可忽略的,因此,该方法取得的效果往往不佳。后来,1967年,Helstrom在逆滤波的基础加以改进,提出了维纳滤波的方法,该方法是以使得到的恢复图像与实际真实图像之间的均方差最小为目标上进行努力,该方法虽然使图像去模糊的效果有了提高,但是性能的提高是以清晰图像和噪声的功率谱比是己知的为前提条件,而一旦功率谱比不准确,那么所达到的效果也是无法令人满意的。此后,研究者们又提出了一些基于贝叶斯原理和正则化方式的去模糊方法,比如Yuan等提出了使用双边滤波的方法对原始图像噪声进行预处理,降低了噪声对图像复原的干扰,可以较好的保持图像边缘信息;而Joshi等人通过大量的实验发现,图像边缘结构对于模糊核的估计是必不可少的,于是,在此基础上提出使用冲击滤波来恢复图像边缘的细小结构,从而在促进估计模糊核的准确性的基础上,提高了图像模糊消除的效果。
随着技术的不断进步,人们的研究目标开始变成具有复杂特性的大模糊问题,并且由于模糊问题成因复杂,很难准确获得模糊核模型,而模糊核对图像复原起着至关重要的作用,因此盲去模糊算法受到人们的重视,其中,基于稀疏先验知识

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值