深度学习
文章平均质量分 94
Elsa的迷弟
在珠海西山居、北京点点互动实习过。
目前在北京点点互动实习。
展开
-
深度学习(提高泛化能力)+深度学习未来
除此之外,变换还包括:几何变换,对比度变换,颜色变换,添加随机噪声,图像模糊。当样本类别内差异较大时,为了减少样本差异,会对样本数据进行预处理。将差分图像作为神经网络输入,就可以抑制图像的整体亮度变化。通过对样本进行平移、旋转、或镜像翻转来得到新的样本。在每次迭代时,随机选取一部分单元,将其输出设置为0。白化可以消除直流分量等相关信息较高的像素信息,只。从多个特征图的相同位置选取最大值作为最后的特征图。起到了类似归一化的方法,抑制过拟合。白化是一种消除数据间相关性的方法。均值图像为图像颜色的平均值图。原创 2023-06-06 10:44:58 · 806 阅读 · 0 评论 -
深度学习(自编码器)
分布式。原创 2023-06-06 09:55:58 · 591 阅读 · 0 评论 -
Hopfield神经网络与受限波尔兹曼机
每个节点都可处于一种可能的状态(1或-1),即当该神经元所受的刺激超过其阀值时,神经元就处于一种状态(比如1),否则神经元就始终处于另一状态(比如-1)。当需要记忆的模式之间较为相似,或者需要记忆的模式太多,hopfield神经网络就不能正确的辨别模式。Hopfield神经网络是一种递归神经网络,从输出到输入均有反馈连接,每一个神经元跟所有其他神经元相互连接,又称为。网络,有n个神经元节点,每个神经元的输出均接到其它神经元的输入。的资料甚少,而且各资料之间有差异,大多全是公式。为迭代次数,有如下公式。原创 2023-06-05 16:13:08 · 2775 阅读 · 0 评论 -
深度学习(卷积神经网络)
视网膜应用多条平行通路进行信息的传递和处理,同样的,视觉信息在脑内的处理过程也有类似的平行模式,即不同性质的视觉信息成分经不同的神经环路通道预处理,最终由不同性质的皮层细胞来分别进行分析处理与整合。目前的证据表明,中枢视觉信息的处理既是由低级向高级逐步升级的过程,又遵循着平行处理的原则。所以,像前文提到过的。,在视皮层内按照一定的规则在空间上排列起来,这种按功能排列的皮层结构,即皮层的功能构筑,沿着皮层的不同层次。有的神经递质可以增强下一级神经元的电活动,有的神经递质则会抑制下一级神经元的电活动,比如。原创 2023-06-03 17:35:01 · 1017 阅读 · 0 评论 -
深度学习(神经网络)
注:由于反向误差梯度与sigmoid函数的导数有关,而sigmoid函数的导数会在值较大时有较小的倒数,故会导致权值调整较小。由于随机梯度下降法只使用部分训练样本,每次迭代后样本集的趋势都会发生变化,所以减少了迭代结果陷入局部最优解的情况。但是过大的学习率会导致结果过拟合,如上,我们需要最后值为3,但修改后的值甚至小于了1。所以当误差越大时,梯度就越大,参数w和b的调整就越快,训练的速度也就越快。的分母是对输出层所有单元(q = 1,······,Q)的激活函数值的求和,起到归一化的作用。原创 2023-06-03 09:48:33 · 1972 阅读 · 0 评论