学习笔记:
学习来源:https://zhuanlan.zhihu.com/p/631967998?utm_source=wechat_session&utm_medium=social&s_r=0
提示是什么?
提示工程是什么?
提示工程:Prompt Engineering
关注提示词开发和优化,帮助用户将大语言模型(Large Language Model, LLM)用于各场景和研究领域。
探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。
提示工程有什么好处?
有助于用户更好地了解大型语言模型的能力和局限性。
模型设置是什么?
核采样技术:
top_p
temperature
可以用来控制模型返回结果的真实性。
参数值低:准确和事实的答案
参数值高:多样化的答案
一般只改变一个参数,不用两个都调整。
基础提示词是什么?
简单的提示词获得大量结果,但结果的质量与提供的信息数量和完善度有关。
一个提示词可以包含传递到模型的指令或问题等信息,也可以包含其他详细信息,如上下文、输入或示例等。
提示词格式什么?
标准提示词应该遵循的格式:
<问题>?
或
<指令>
这种可以被格式化为标准的问答格式:
Q:<问题>?A:
零样本提示,即用户不提供任务结果相关的示范,直接提示语言模型给出的任务相关的回答。
小样本提示反噬:
用户提供少量的提示范例,如任务说明等。
小样本提示一般遵循以下格式:
<问题>?<答案><问题>?<答案><问题>?<答案><问题>?
问答模式:
Q: <问题>?A: <答案>Q: <问题>?A: <答案>Q: <问题>?A: <答案>Q: <问题>?A:
提示词要素是什么?
提示词可以包含以下任意要素:
指令:想要模型执行的特定任务或指令。
上下文:包含外部信息或额外的上下文信息,引导语言模型更好地响应。
输入数据:用户输入的内容或问题。
输出指示:指定输出的类型或格式。
其他人建议将指令放在提示的开头。建议使用一些清晰的分隔符,如“###”,来分隔指令和上下文。