tensorflow
向上Claire
这个作者很懒,什么都没留下…
展开
-
训练模型的迭代方法
训练模型的迭代方法模型训练要点首先对权重w和偏差b进行初始猜测然后反复调整这些猜测知道获得损失可能最低的权重和偏差为止收敛原创 2020-02-15 15:20:54 · 4201 阅读 · 0 评论 -
构建模型
构建模型定义训练数据的占位符,x是特征值,y是标签值x=tf.placeholder(“float”,name=“x”)y=tf,placeholder(“float”,name=“y”)定义模型函数def model(x,w,b):return tf.multiply(x,w)+b创建变量 Tensorflow变量的声明函数是tf.Variable tf.Variable的作用...原创 2020-02-15 15:18:29 · 435 阅读 · 0 评论 -
线性回归问题TensorFlow实战
核心步骤使用TensorFlow进行算法设计与训练的核心步骤(1)准备数据(2)构建模型(3)训练模型(4)进行预测线性方程单变量的线性方程可以表示为:y=wx+by=2.0x+1本例通过生成人工数据集,随机生成一个近似采样随机分布,使得w=2.0,b=1,并加入一个噪声,噪声的最大振幅为0.4...原创 2020-02-14 13:24:18 · 240 阅读 · 0 评论 -
梯度下降法
梯度下降法梯度是矢量:具有方向和大小学习率用梯度乘以一个称为学习速率(有时也称为步长)的标量,以确定下一个点的位置超参数原创 2020-02-14 12:37:37 · 159 阅读 · 0 评论 -
训练
训练训练模式表示通过有有标签样本来学习(确定)所有权重和偏差的理想值在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度地减少损失的模型这一过程称为经验风险最小化损失损失是对糟糕预测的惩罚:损失是一个数值,表示单个样本而言模型预测的准确程度如果模型的预测完全准确,则损失为0,否则损失会较大训练模型的目标是从所有样本中找到一组平均损失“较小”的权重和偏差...原创 2020-02-13 22:04:34 · 206 阅读 · 0 评论 -
监督式机器学习
监督式机器学习机器学习系统:通过学习如何组成输入信息来对未见过的数据做出有用的预测标签是我们要预测的真实事务:y 线性回归中的y变量特征是指用于描述数据的输入变量:xi 线性回归中的{x1,x2```xn}变量...原创 2020-02-13 21:49:15 · 250 阅读 · 0 评论 -
TensorBoard:TensorFlow的可视化工具
TensorBoard:TensorFlow的可视化工具在TensorBoard中查看图结构import tensorflow as tf#清除default grap和不断增加的节点tf.reset_default_graph()# logdir改为自己机器上的合适路径logdir='D:/log'#生成一个写日志的wirter,并将当前的TensorFlow计算图写入日志w...原创 2020-02-13 21:36:01 · 145 阅读 · 0 评论 -
占位符
占位符 placeholder例如java语言的函数或者之前的for _ in rage中的_tf.placeholder(dtype,shape=None,name=None)Feed提交数据和Fetch提取数据c=tf.multiply(a,b,name='c')多个参数可以通过一次Feed完成执行import tensorflow as tfresult=sess.r...原创 2020-02-13 21:07:08 · 222 阅读 · 0 评论 -
常量与变量
常量与变量注意一点,变量第一个字母是大写V,常量第一个字母是小写c个别变量初始化也是一个操作,也会产生一个点node1=tf.Variable(3.0,tf.float32,name="node1")node2=tf.Variable(4.0,tf.float32,name="node2")result=tf.add(node1,node2,name="add")sess=tf....原创 2020-02-13 20:58:21 · 214 阅读 · 0 评论 -
会话
会话原创 2020-02-13 20:36:31 · 91 阅读 · 0 评论 -
操作(tensorflow)
操作import osos.environ['TF_CPP_MIN_LOG_LEVEL']='2'import tensorflow as tftf.reset_default_graph() #清楚default graph和不断增加的节点#定义变量 aa=tf.Variable(1,name="a")# 定义操作b为a+1b=tf.add(a,1,name="b")# 定义...原创 2020-02-13 20:29:55 · 183 阅读 · 0 评论