- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/kV8ZsJv6cPNzJLEuhPfvXg) 中的学习记录博客**
- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**
一:理论知识储备
ResNet-50介绍:
ResNet-50有两个基本的块,分别名为Conv Block 和 Identity-Block
二:前期工作
1.设置GPU
import tensorflow as tf
gpus = tf.config.list_physical_devices('GPU')
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True)
tf.config.set_visible_devices(gpus[0], 'GPU')
2.导入数据
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
import os,PIL,pathlib
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers,models
data_dir = "/content/drive/MyDrive/bird_photos"
data_dir = pathlib.Path(dir)
3.查看数据
image_count = len(list(data_dir.glob('*/*')))
print(image_count)
photo_count = {}
for subfolder in data_dir.iterdir():
if subfolder.is_dir():
photo_count[subfolder.name] = len(list(subfolder.glob("*.jpg"))) + len(list(subfolder.glob("*.png")))
photo_count
三:数据预处理
1.加载数据
batch_size = 8
img_height =224
img_width =224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",