如何对抗算法偏见?这五种方法值得一试

文章探讨了人工智能中的算法偏见问题,指出当训练数据包含人类偏见时,系统会复制并放大这些偏见。解决方案包括获取更好数据、预处理数据、增加模型复杂度、修改系统和更改预测目标。强调在使用AI决策时要考虑公平性和道德性,以确保技术的公平和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近日,澳大利亚人权委员会、消费者政策研究中心,CSIRO Data61和CHOICE倡导小组合作撰写了文章《Using artificial intelligence to make decisions: Addressing the problem of algorithmic bias (2020)》,该文章分析了如何识别并纠正人工智能系统中的算法偏见。

算法偏见如何产生?

人工智能是用数据进行训练的,当训练数据集包含人类决策的固有偏见时,这些错误和偏见将被系统编码并放大。

随着人工智能技术和大数据的应用越来越广泛,算法偏见也逐渐出现在人们的日常生活中。

例如,银行会根据以前的借贷记录大数据来训练贷款系统,该系统会将贷款申请人的财务历史、工作历史和人口统计信息与先前申请人的相应信息进行比较,据此推断申请人是否具有偿还能力。

但这些训练数据可能包含了贷款管理者对过去的贷款申请做出决策时的无意识偏差,如果少数族裔的客户曾经被不公平地拒绝了贷款申请,则该系统可能会认为这些群体的还款能力低于实际水平。

如何解决算法偏见?

文章探讨了解决算法偏见的几种方法,还提供了消除这种偏见的技术指导,以便人工智能系统产生的结果不会因种族、年龄、性别或残障等特征受到歧视。

研究人员模拟了一个电力零售商,使用AI驱动的工具来决定如何向客户提供商品,以及以何种条款提供商品。这一模拟的场景是用虚构的历史数据进行训练的。

根据模拟的结果,文章得出了5种纠正算法偏见的方法。该工具包可应用于各个领域的企业,以确保人工智能系统的公平和准确。

1.获得更好的数据

通过获取额外的数据点或新型信息,特别是那些少数群体或在现有数据中可能出现的错误信息,可以降低算法偏见的风险。

2.预处理数据

这包括编辑数据集,以掩盖或删除与反歧视法保护相关的属性的信息,例如种族或性别。

3.增加模型复杂度

越是简单的人工智能模型就越容易进行测试、监视和询问。但是,它也可能不够准确,并导致普遍化、更倾向于多数而不是少数群体。

4.修改系统

可以调整人工智能系统的逻辑和参数,以抵消算法偏见,这可以通过为少数群体设置不同的决策阈值来完成。

5.更改预测目标

用于指导人工智能系统的具体措施会直接影响其在不同群体中的决策,寻找更公平的措施用作预测目标将有助于减少算法偏见。

考虑合法性和道德性

在对希望采用人工智能进行决策的政府和企业的建议中,文章强调了在使用此类技术时考虑公平和道德这一原则的重要性。

文章还建议对系统进行严格的设计和测试,以确保输出不会受到算法偏见的影响。一旦投入运行,就应该对其进行密切监控。最后,文章建议以负责任和合乎道德的方式使用人工智能系统,不仅要遵守法律,还要符合社会规范,并考虑到对个人、社区和环境的影响。

随着人工智能决策工具的普及,我们现在不仅有机会提高生产率,还能创造一个更加公平和公正的社会,但前提是我们谨慎地使用人工智能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值