智能座舱关注车内感知,通过在车内安装摄像头感知驾驶员和乘客的行为以及车内状况。座舱行为识别任务旨在识别车辆座舱中驾驶员及乘客的行为,改善驾乘体验提供技术支持,以提供驾驶员和乘客更好的驾乘体验和更安全的行车保障。
图片
图片
座舱行为识别-数据标注方式
对于不同的座舱行为,识别的人体目标不同,因此标注的方式不同,典型的标注方式包括人脸关键点标注,手势关键点标注,物品检测框标注,物品&行为标签标注。典型的例子如下:
1
人脸标注
此类标注方式用于识别人脸相关的行为。
例如疲劳驾驶识别、视线偏移识别等,具体的标注形式是标注人脸关键点+行为的标签。
2
人体&物品标注
此类标注方式用于识别人体及物体相关的行为。
例如抽烟识别、开车喝水、开车打电话等,具体的标注形式是标注物品的检测框+人手部检测框+行为类别标签信息。
3
手势标注
此类标注方式用于识别手势动作。
例如手指不同指向,手掌动作,手指滑动等,具体标注行为为标注手势关键点+手势类别标签信息。
图片
图片
座舱行为识别-任务难点
基于不同座舱行为与人体目标的实际情况,座舱行为识别任务具备行为复杂、光照以及性能三个难点:
1
行为复杂
座舱行为种类众多,并且部分行为存在一定程度的主观性(例如晕车、疲劳驾驶等行为),造成算法识别难度较大。
2
光照难点
汽车在行驶过程中会面临来自不同方向的强光干扰,造成人脸、人体、物体等目标会出现光照不均匀,此外在夜晚时间光照不足&#x