1 找函数的解析解
1.1使用desolve函数,求解一阶微分方程
y1=dsolve('Dy==5');
y2=dsolve('Dy==x','x');
[y5,y6]=dsolve('Dx==y+x','Dy==2*x');
[y7,y8]=dsolve('Dx==y+x','Dy==2*x','x(0)==0','y(0)==1') ;
y9=dsolve('Dy==-2*y+2*x^2+2*x','y(0)==1','x') ;
%引号里的字符串都可以直接用变量代替
eqn10='Dy = y*x';
y10=dsolve(eqn10,'y(1)=1','x');
%画图方法
y10;
x = linspace(0,1,20);
z = eval(vectorize(y10));
plot(x,z)
结果
y1 = C1 + 5*t
y2 = x^2/2 + C2
y5 = C8*exp(2*t) - (C7*exp(-t))/2
y6 = C7*exp(-t) + C8*exp(2*t)
y7 = exp(2*t)/3 - exp(-t)/3
y8 = (2*exp(-t))/3 + exp(2*t)/3
y9 = exp(-2*x) + x^2
y10 = exp(-1/2)*exp(x^2/2)
1.2使用desolve函数,求解二阶微分方程

eqn = 'D2y + 8*Dy + 2*y = cos(x)'; %D2y表示y'' Dy表示y'
inits = 'y(0) = 0,Dy(0) = 1';
y = dsolve(eqn,inits,'x');
x = linspace(0,10,300);
z = eval(vectorize(y));
plot(x,z);
结果
y = (14^(1/2)*exp(4*x - 14^(1/2)*x)*exp(x*(14^(1/2) - 4))*(sin(x) - cos(x)*(14^(1/2) - 4)))/(28*((14^(1/2) - 4)^2 + 1)) - (14^(1/2)*exp(4*x + 14^(1/2)*x)*exp(-x*(14^(1/2) + 4))*(sin(x) + cos(x)*(14^(1/2) + 4)))/(28*((14^(1/2) + 4)^2 + 1)) - (14^(1/2)*exp(-x*(14^(1/2) + 4))*(7*14^(1/2) + 27))/(28*(8*14^(1/2) + 31)) - (14^(1/2)*exp(x*(14^(1/2) - 4))*(393*14^(1/2) + 1531))/(28*(8*14^(1/2) - 31)*(8*14^(1/2) + 31)^2)
图像