信号&系统 | 信号的概念与常用信号

信号的本质是函数,因此信号处理方法具有普适性,应用领域非常广泛。本篇介绍信号的基本概念以及一些典型的信号,主要参考奥本海姆的经典教材《信号与系统》,微信搜索公众号PurePlay,后台回复Oppenheim即可获取中文PDF。

目录

1. 信号的定义
2. 能量和功率
3. 信号的基本变换
4. 信号的性质
  4.1 周期性
  4.2 奇偶性
5. 复指数信号及其周期性
  5.1 连续时间复指数信号
    5.1.1 实指数信号
    5.1.2 周期复指数与正弦信号
    5.1.3 一般复指数信号
  5.2 离散时间复指数信号
    5.2.1 实指数信号
    5.2.2 复指数信号
    5.2.3一般复指数信号
6. 单位脉冲与阶跃信号
  6.1 离散情形
  6.2 连续情形

1. 信号的定义

信号:信息的承载方式,数学上表示为一个或多个变量的函数(自变量通常为时间t,也可以是高度、深度等)。

  • 连续时间信号:信号函数的定义域是连续的,常用 x ( t ) x(t) x(t)来表示,即 x x x是连续变量 t t t的函数。例如,一个语音信号可以表示为声压随时间变化的函数。
  • 离散时间信号:信号函数的定义域仅在离散时间点上取值,常用 x [ n ] x[n] x[n]来表示,即 x x x是离散变量 n n n的函数。例如,经济系统中随时间变化的股票指数。

注意此处连续/离散与函数的连续/离散的区别。

2. 能量和功率

引子:考虑单位阻值电阻( R = 1 Ω R=1\Omega R=1Ω)的瞬时功率
p ( t ) = v ( t ) i ( t ) = i 2 ( t ) = v 2 ( t ) p(t)=v(t) i(t)=i^{2}(t)=v^{2}(t) p(t)=v(t)i(t)=i2(t)=v2(t)

其中, i ( t ) i(t) i(t)和$ v(t)$是电阻的电流和电压。

在时间区间 [ t 1 , t 2 ] [t1, t2] [t1,t2]内消耗的能量
E T = ∫ t 1 t 2 p ( t ) d t = ∫ t 1 t 2 i 2 ( t ) d t = ∫ t 1 t 2 v 2 ( t ) d t E_{T}=\int_{t_{1}}^{t_{2}} p(t) d t=\int_{t_{1}}^{t_{2}} i^{2}(t) d t=\int_{t_{1}}^{t_{2}} v^{2}(t) d t ET=t1t2p(t)dt=t1t2i2(t)dt=t1t2v2(t)dt

在时间区间$ [t1, t2] $内的功率等于平均能量
P T = E T t 2 − t 1 = 1 t 2 − t 1 ∫ t 1 t 2 i 2 ( t ) d t = 1 t 2 − t 1 ∫ t 1 t 2 v 2 ( t ) d t P_{T}=\frac{E_{T}}{t_{2}-t_{1}}=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} i^{2}(t) d t=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} v^{2}(t) d t PT=t2t1ET=t2t11t1t2i2(t)dt=t2t11t1t2v2(t)dt

类似的,对于任意连续时间信号 x ( t ) x(t) x(t),其在区间$ [t_1,t_2] $上的能量和功率定义为:
E ∞ = ∫ t 1 t 2 ∣ x ( t ) ∣ 2 d t P ∞ = 1 t 2 − t 1 ∫ t 1 t 2 ∣ x ( t ) ∣ 2 d t \begin{array}{l}{E_{\infty}=\int_{t_1}^{t_2}|x(t)|^{2} d t} \\ {P_{\infty}=\frac{1}{t_2-t_1} \int_{t_1}^{t_2}|x(t)|^{2} d t}\end{array} E=t1t2x(t)2dtP=t2t11t1t2x(t)2dt

对于任意离散时间信号 x [ n ] x[n] x[n],其在区间$ [n_1,n_2] $上的能量和功率定义为:
E ∞ = ∑ n = n 1 n 2 ∣ x [ n ] ∣ 2 P ∞ = 1 n 2 − n 1 + 1 ∑ n = n 1 n 2 ∣ x [ n ] ∣ 2 \begin{array}{l}{E_{\infty}=\sum_{n=n_1}^{n_2}|x[n]|^{2}} \\ {P_{\infty}=\frac{1}{n_2-n_1+1}\sum_{n=n_1}^{n_2}|x[n]|^{2}}\end{array} E=n=n1n2x[n]2P=n2n1+11n=n1n2x[n]2

很多系统关心的是信号在无穷区间内的功率和能量,在这些情况下,将连续时间信号 x ( t ) x(t) x(t)的总能量和功率定义为
E ∞ ≜ lim ⁡ T → ∞ ∫ − T T ∣ x ( t ) ∣ 2 d t = ∫ − ∞ ∞ ∣ x ( t ) ∣ 2 d t P ∞ ≜ lim ⁡ T → ∞ 1 2 T ∫ − T T ∣ x ( t ) ∣ 2 d t \begin{array}{l}{E_{\infty}\triangleq\lim _{T \rightarrow \infty} \int_{-T}^{T}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|x(t)|^{2} d t} \\ {P_{\infty}\triangleq\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|x(t)|^{2} d t}\end{array} ElimTTTx(t)2dt=x(t)2dtPlimT2T1TTx(t)2dt

离散时间信号 x [ n ] x[n] x[n]的能量和功率定义为:
E ∞ ≜ lim ⁡ N → ∞ ∑ n = − N N ∣ x [ n ] ∣ 2 = ∑ n = − ∞ ∞ ∣ x [ n ] ∣ 2 P ∞ ≜ lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − N N ∣ x [ n ] ∣ 2 \begin{array}{l}{E_{\infty}\triangleq\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}|x[n]|^{2}=\sum_{n=-\infty}^{\infty}|x[n]|^{2}} \\ {P_{\infty}\triangleq\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x[n]|^{2}}\end{array} ElimNn=NNx[n]2=n=x[n]2PlimN2N+11n=NNx[n]2

其中 ∣ x ∣ |x| x表示 x x x(可能为复数)的模。

根据功率和能量的取值可以定义三类信号:

  • 0 < E ∞ < ∞ 0 < E_\infty < \infty 0<E<,则称 x ( t ) x(t) x(t)(或 x [ n ] x[n] x[n])为有限能量信号,也称为平方可积信号( x ( t ) x(t) x(t))或平方可和信号( x [ n ] x[n] x[n]),根据定义其功率一定为0;
  • 0 < P ∞ < ∞ 0<P_\infty<\infty 0<P<,则称 x ( t ) x(t) x(t)(或 x [ n ] x[n] x[n])为有限功率信号,根据定义其能量必然无限大;
  • 否则称 x ( t ) x(t) x(t)(或 x [ n ] x[n] x[n])为无限能量、无限功率信号,其功率和能量均为无限大。

3. 信号的基本变换

本节的基本变换只涉及自变量的简单变换,也就是时间轴的变换:

时移(time shift):对连续时间信号而言,将 x ( t ) x(t) x(t)沿 t t t轴向右平移或延迟 t 0 t_0 t0而获得 x ( t – t 0 ) x(t – t_0) x(tt0);将 x ( t ) x(t) x(t)沿 t t t轴向左平移或超前 t 0 t_0 t0而获得 x ( t + t 0 ) x(t + t_0) x(t+t0)。离散时间信号的时移与之类似,一般而言时移的长度 n 0 n_0 n0为整数。在信号接收的过程中,常常由于各个接受点与发射机的距离不等而造成时移。

反转(time reversal):将连续时间信号 x ( t ) x(t) x(t) t = 0 t=0 t=0为轴反转得到 x ( − t ) x(-t) x(t);将离散时间信号 x [ n ] x[n] x[n] n = 0 n=0 n=0为轴反转得到 x [ − n ] x[-n] x[n]。如果 x ( t ) x(t) x(t)代表一盘录音磁带,那么 x ( − t ) x(-t) x(t)就代表同样一盘磁带倒过来放的结果。

尺度变换(time scaling) x ( α t ) x(\alpha t) x(αt)可通过将 x ( t ) x(t) x(t)沿 t t t轴压缩 (若 α > 1 \alpha >1 α>1) 或扩展 (若 α < 1 \alpha <1 α<1)而获得。其中,压缩类似于磁带的倍速播放,扩展则是磁带的慢速播放。

对于任意实数 α , β \alpha,\beta α,β x ( α t + β ) x(\alpha t + \beta) x(αt+β)总是可以通过将 x ( t ) x(t) x(t)进行以下变换得到:线性的扩展(若 ∣ α ∣ < 1 |\alpha|<1 α<1)或压缩(若 ∣ α ∣ > 1 |\alpha|>1 α>1),反转(若 α < 0 \alpha<0 α<0)以及时移(若 β ≠ 0 \beta \neq 0 β=0)。

4. 信号的性质

信号作为一种函数,其周期性和奇偶性是须要重点关注的性质。

4.1 周期性

连续周期信号: ∃ T > 0 , ∀ t , x ( t ) = x ( t + T ) \exists T>0,\forall t,x(t)=x(t+T) T>0,tx(t)=x(t+T)

离散周期信号: ∃ N > 0 , ∀ n , x [ n ] = x [ n + N ] \exists N>0,\forall n,x[n]=x[n+N] N>0,nx[n]=x[n+N]

使得上式成立的最小正值 T ( N ) T ( N ) T(N)称为基波周期( fundamental period )。

周期信号的功率等于每一个正弦分量的功率之和,即功率叠加。若正弦函数的和构成的是一个非周期信号, 那么仍存在功率的叠加关系。

4.2 奇偶性

偶信号:原始信号反转变换之后保持不变,即 x ( − t ) = x ( t ) x(-t) = x(t) x(t)=x(t)或者 x [ n ] = x [ − n ] x[n] = x[-n] x[n]=x[n]

奇信号:原始信号反转变换之后变为相反数,即 x ( − t ) = − x ( t ) x(-t) = -x(t) x(t)=x(t)或者 x [ n ] = − x [ − n ] x[n] = -x[-n] x[n]=x[n]

任何信号都能分解成奇信号与偶信号之和
x ( t ) = E v { x ( t } + O d { x ( t ) } x(t) = Ev\{x(t\}+Od\{x(t)\} x(t)=Ev{x(t}+Od{x(t)}

其中,偶信号、奇信号分别为
E v { x ( t ) } = 1 2 [ x ( t ) + x ( − t ) ] Ev\{x(t) \} =\frac{1}{2}[x(t)+x(-t)] Ev{x(t)}=21[x(t)+x(t)]

O d { x ( t ) } = 1 2 [ x ( t ) − x ( − t ) ] Od\{x(t)\} = \frac{1}{2}[x(t)-x(-t)] Od{x(t)}=21[x(t)x(t)]


下面探讨一些典型信号,这些典型信号经常作为构造其他信号的基本信号单元,包括复指数信号(正弦信号)、单位脉冲与单位阶跃信号。

5. 复指数信号及其周期性

5.1 连续时间复指数信号

连续复指数信号具有如下形式:
x ( t ) = C e a t x(t)=C \mathrm{e}^{\mathrm{at}} x(t)=Ceat

其中, C C C a a a一般为复数,根据这两个参数值的不同,复指数信号具有不同的特征。

5.1.1 实指数信号

C C C a a a均为实数时,称 x ( t ) x(t) x(t)为实指数信号: a a a是正实数,则 x ( t ) x(t) x(t) t t t增加而指数增长; a a a是负实数,则 x ( t ) x(t) x(t) t t t增加而指数衰减; a = 0 a=0 a=0 x ( t ) x(t) x(t)为常数。

5.1.2 周期复指数与正弦信号

将a限制为纯虚数,考虑如下信号
x ( t ) = e j w 0 t = s i n ( w 0 t ) + j c o s ( w 0 t ) x(t) = e^{jw_{0}t}=sin(w_0t)+jcos(w_0t) x(t)=ejw0t=sin(w0t)+jcos(w0t)

在有限区间 [ t 1 , t 2 ] [t1, t2] [t1,t2]内的能量和功率分别为
E T = ∫ t 1 t 2 ∣ e j w 0 t ∣ 2 d t = ∫ t 1 t 2 1 2 d t = t 2 − t 1 E_{T}=\int_{t_{1}}^{t_{2}} |e^{jw_{0}t}|^2 d t = \int_{t_1}^{t_2} 1^2 d t = t_2-t_1 ET=t1t2ejw0t2dt=t1t212dt=t2t1

P T = E T t 2 − t 1 = 1 P_{T}=\frac{E_{T}}{t_{2}-t_{1}}=1 PT=t2t1ET=1

因此,在无穷区间上,其平均功率为1,能量无穷大,是一种有限功率信号。

下面探讨连续复指数的周期性,其基波周期为
T 0 = 2 π w 0 T_0 = \frac{2\pi}{w_0} T0=w02π

称w0​基波频率(fundamental frequency),反映了x(t)的震荡速率 ,与周期长度成反比。

下面是一组具有谐波关系(harmonically related)的复指数信号,即集合内的全部信号都是周期的且有公共周期T0
ϕ k ( t ) = e j k w 0 t , k = 0 , ± 1 , ± 2 , … \phi_k(t) = e^{jkw_0t},\quad k=0,\pm1,\pm2, \dots ϕk(t)=ejkw0t,k=0,±1,±2,

基波周期为
T = 2 π ∣ k ∣ w 0 = T 0 ∣ k ∣ T = \frac{2\pi}{|k|w_0}=\frac{T_0}{|k|} T=kw02π=kT0

正弦信号的复指数形式为
A cos ⁡ ( ω 0 t + ϕ ) = A 2 e j ϕ e j ω 0 t + A 2 e − j ϕ e − j ω 0 t A \cos \left(\omega_{0} t+\phi\right) = \frac{A}{2} \mathrm{e}^{j \phi} \mathrm{e}^{j \omega_{0} t}+\frac{A}{2} \mathrm{e}^{-j\phi} \mathrm{e}^{-\mathrm{j} \omega_{0} t} Acos(ω0t+ϕ)=2Aejϕejω0t+2Aejϕejω0t

利用欧拉公式可将复指数与正弦信号进行互换。

5.1.3 一般复指数信号

对于一般复指数信号 C e α t Ce^\alpha t Ceαt,将 C C C用极坐标, a a a用直角/笛卡尔坐标表示,
C = ∣ C ∣ e j θ C=|C|e^{j\theta} C=Cejθ

a = r + j w 0 a = r+jw_0 a=r+jw0

进一步
C e a t = ∣ C ∣ e j θ e ( r + j ω 0 ) t = ∣ C ∣ e r t e j ( ω 0 t + θ ) = ∣ C ∣ e r t cos ⁡ ( ω 0 t + θ ) + j ∣ C ∣ e r t sin ⁡ ( ω 0 t + θ ) \\ C\mathrm{e}^{a t}=|C| \mathrm{e}^{\mathrm{j} \theta} \mathrm{e}^{\left(r+j \omega_{0}\right) t}=|C| \mathrm{e}^{r t} \mathrm{e}^{\mathrm{j}\left(\omega_{0} t+\theta\right)}= |C| \mathrm{e}^{r t} \cos \left(\omega_{0} t+\theta\right)+j|C| \mathrm{e}^{r t} \sin \left(\omega_{0} t+\theta\right) Ceat=Cejθe(r+jω0)t=Certej(ω0t+θ)=Certcos(ω0t+θ)+jCertsin(ω0t+θ)

若r>0,则是振幅呈指数增长的正弦信号;若r<0,则是振幅呈指数衰减的正弦信号;若r=0,则为正弦波。

5.2 离散时间复指数信号

离散复指数信号具有如下形式:
x [ n ] = C α n (1) x[n]=C \alpha^{n} \tag1 x[n]=Cαn(1)

其中C和α一般均为复数。若令 α = e β \alpha = e^\beta α=eβ,则有另一种表达式
x [ n ] = C e β n (2) x[n]=C \mathrm{e}^{\beta n} \tag2 x[n]=Ceβn(2)

虽然从形式上看,式(2)更类似连续时间复指数信号的表达式,但式(1)往往更为方便和实用。

5.2.1 实指数信号

当C和α都是实数时,如果|α|>1,信号随n呈指数增长;|α|<1,则随n指数衰减。另外当α<0时,x[n]的符号会交替变化。实数离散时间指数序列可用来表示人口增长、投资回报等。

5.2.2 复指数信号

β限制为纯虚数,即|α|=1
x [ n ] = e j w 0 n x[n] = e^{jw_0n} x[n]=ejw0n

与连续信号相似,可以利用欧拉公式可将复指数与正弦信号进行互换,也是一种有限功率信号。

下面探讨离散复指数信号的周期性,考虑频率为 w 0 + 2 π w_0+2\pi w0+2π的离散时间复指数信号
e j ( ω 0 + 2 π ) n = e j 2 π n e j ω 0 n = e j ω 0 n e^{j\left(\omega_{0}+2 \pi\right) n}=e^{j 2 \pi n} e^{j \omega_{0} n}=e^{j \omega_{0} n} ej(ω0+2π)n=ej2πnejω0n=ejω0n

说明离散时间复指数信号在频率 w 0 + 2 π w_0+2\pi w0+2π w 0 w_0 w0时完全一样,因此对于不同的离散时间复指数信号,仅仅需要在某一个 2 π 2\pi 2π间隔选择 w 0 w_0 w0即可。随着 w 0 w_0 w0从0开始增加,其震荡速率越来越快,在 w 0 = π w_0=\pi w0=π时到达震荡速率的最大值,此后开始下降直到 w 0 = 2 π w_0=2\pi w0=2π为止,这时震荡速率与 w 0 = 0 w_0=0 w0=0时相同。离散时间复指数的低频部分(也就是慢变化)位于 w 0 w_0 w0在0, π \pi π和任何其他 π \pi π的偶数倍附近; 而高频部分(也就是快变化),则位于 π \pi π 的奇数倍值附近。而连续时间复指数信号中 w 0 w_0 w0越大,信号振荡频率就越高。

假设离散时间复指数信号的周期为N>0,则
e j ω 0 ( n + N ) = e j ω 0 n \mathrm{e}^{\mathrm{j} \omega_{0}(n+N)}=\mathrm{e}^{\mathrm{j} \omega_{0} n} ejω0(n+N)=ejω0n

等价于
e j w 0 N = 1 e^{jw_0N}=1 ejw0N=1

因此 w 0 N w_0N w0N必须是 2 π 2\pi 2π的整数倍,即存在整数m,使得
w 0 N = 2 π m ⇒ 2 π w 0 = N m w_0N=2\pi m \\ \Rightarrow \frac {2\pi} {w_0} = \frac N m w0N=2πmw02π=mN

因此当且仅当 2 π / w 0 2\pi/w_0 2π/w0为有理数时,离散周期复指数信号的具有周期性,这一结论对离散时间正弦信号也是成立的。进一步,当m与N互质时,其基波周期就是N,基波频率是 2 π / N 2\pi/N 2π/N

考虑一组具有谐波关系(具有公共周期N)的周期离散时间复指数信号,这些信号的频率必须是基波频率 2 π / N 2\pi /N 2π/N的整数倍,即
ϕ k [ n ] = e j k ( 2 π / N ) n , k = 0 , ± 1 , ⋯ \phi_{k}[n]=\mathrm{e}^{j k(2 \pi / N) n}, \quad k=0, \pm 1, \cdots ϕk[n]=ejk(2π/N)n,k=0,±1,

连续时间情况下,这些谐波关系信号都是不相同的,然而在离散时间情况下
ϕ k + N [ n ] = e j ( k + N ) ( 2 π / N ) n = e j k ( 2 π / N ) n e j 2 π n = ϕ k [ n ] \begin{aligned} \phi_{k+N}[n] &=\mathrm{e}^{\mathrm{j}(k+N)(2 \pi / \mathrm{N}) n} \\ &=\mathrm{e}^{\mathrm{j} k(2 \pi / N) n} \mathrm{e}^{\mathrm{j} 2 \pi n} =\phi_{k}[n] \end{aligned} ϕk+N[n]=ej(k+N)(2π/N)n=ejk(2π/N)nej2πn=ϕk[n]

因此这组具有谐波关系的周期离散时间复指数信号中,仅有N个互不相同的周期复指数信号。

5.2.3一般复指数信号

将C和α均以极坐标形式给出
c = ∣ C ∣ e j θ α = ∣ α ∣ e j w 0 c = |C|e^{j\theta} \\ \alpha = |\alpha|e^{jw_0} c=Cejθα=αejw0

则有
C α n = ∣ C ∥ α ∣ n cos ⁡ ( ω 0 n + θ ) + j ∣ C ∥ α ∣ n sin ⁡ ( ω 0 n + θ ) C \alpha^{n}=\left|C\left\|\left.\alpha\right|^{n} \cos \left(\omega_{0} n+\theta\right)+j|C \| \alpha|^{n} \sin \left(\omega_{0} n+\theta\right)\right.\right. Cαn=Cαncos(ω0n+θ)+jCαnsin(ω0n+θ)

∣ α ∣ > 1 |\alpha|>1 α>1,则为振幅呈指数增长的正弦信号;若 ∣ α ∣ < 1 |\alpha|<1 α<1,则为振幅呈指数衰减的正弦信号;若 ∣ α ∣ = 1 |\alpha|=1 α=1,则为正弦信号。

6. 单位脉冲与阶跃信号

6.1 离散情形

离散情况下,单位脉冲(unit impulse)信号定义为
δ [ n ] = { 0 , n ≠ 0 1 , n = 0 \delta[n]=\left\{ \begin{array}{ll} {0,} & {n \neq 0} \\ {1,} & {n=0} \end{array} \right. δ[n]={0,1,n=0n=0

单位阶跃(unit step)信号定义为
u [ n ] = { 0 , n < 0 1 , n ⩾ 0 u[n]=\left\{\begin{array}{ll}{0,} & {n<0} \\ {1,} & {n \geqslant 0}\end{array}\right. u[n]={0,1,n<0n0

不难看出,单位脉冲是单位阶跃的一阶差分,即
δ [ n ] = u [ n ] − u [ n − 1 ] \delta[n] = u[n]-u[n-1] δ[n]=u[n]u[n1]

单位阶跃是单位脉冲的加总,即
u [ n ] = ∑ i = − ∞ n δ [ i ] u[n] = \sum_{i=-\infty}^n\delta[i] u[n]=i=nδ[i]

k = n − i k = n-i k=ni,则等价为
n [ n ] = ∑ k = 0 ∞ δ [ n − k ] n[n] = \sum_{k = 0}^\infty\delta[n-k] n[n]=k=0δ[nk]

单位脉冲可以用于一个信号在 n = 0 n=0 n=0时的采样,即
x [ n ] δ [ n ] = x [ 0 ] δ [ n ] x[n]\delta[n] = x[0]\delta[n] x[n]δ[n]=x[0]δ[n]

更一般的,考虑发生在 n = n 0 n=n_0 n=n0处的单位脉冲,则有
x [ n ] δ [ n − n 0 ] = x [ n 0 ] δ [ n − n 0 ] x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0] x[n]δ[nn0]=x[n0]δ[nn0]

6.2 连续情形

连续单位阶跃信号定义为
u [ t ] = { 0 , t < 0 1 , t > 0 u[t] = \left\{ \begin{array}{ll} {0,} & {t<0} \\ {1,} & {t>0} \end{array} \right. u[t]={0,1,t<0t>0

为了使其可微,引入 u Δ ( t ) u_{\Delta}(t) uΔ(t)函数,其从0上升到1是在一个较短的时间间隔完成的。

定义 δ Δ ( t ) \delta_{\Delta}(t) δΔ(t)函数由 u Δ ( t ) u_{\Delta}(t) uΔ(t)函数对 t t t求导得到, δ Δ ( t ) \delta_{\Delta}(t) δΔ(t)是一个持续期为 Δ \Delta Δ的短脉冲,对于任何 Δ \Delta Δ值,其面积都为1 。

进而,连续情形下的单位脉冲与单位阶跃信号,分别表示为 δ Δ ( t ) \delta_{\Delta}(t) δΔ(t) u Δ ( t ) u_{\Delta}(t) uΔ(t)的极限,即
δ ( t ) = lim ⁡ Δ → 0 δ Δ ( t ) \delta(t) = \lim_{\Delta \to 0}\delta_{\Delta}(t) δ(t)=Δ0limδΔ(t)

u ( t ) = lim ⁡ Δ → 0 u Δ ( t ) u(t) = \lim_{\Delta \to 0}u_{\Delta}(t) u(t)=Δ0limuΔ(t)

则两者之间仍有类似于离散情形下的微积分关系
δ ( t ) = d u ( t ) d t \delta(t) = \frac{\mathrm{d}u(t)}{\mathrm{d}t} δ(t)=dtdu(t)

u ( t ) = ∫ − ∞ t δ ( τ ) d τ u(t) = \int_{-\infty}^{t}\delta(\tau)\mathrm{d}\tau u(t)=tδ(τ)dτ

σ = t − τ \sigma=t-\tau σ=tτ,则有
u ( t ) = ∫ 0 ∞ δ ( t − σ ) d σ u(t) = \int_{0}^{\infty}\delta(t-\sigma)\mathrm{d}\sigma u(t)=0δ(tσ)dσ

类似的,将单位脉冲用于采样,则有
x ( t ) δ ( t ) = x ( 0 ) δ ( t ) x(t)\delta(t) = x(0)\delta(t) x(t)δ(t)=x(0)δ(t)

x ( t ) δ ( t − t 0 ) = x ( t 0 ) δ ( t − t 0 ) x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0) x(t)δ(tt0)=x(t0)δ(tt0)

在实际应用中,常用箭头表示脉冲,箭头的高度代表脉冲的强度。例如下图(a)中的信号,通过对 t t t求导(近似)之后可以将其分解为图(b)中的脉冲。

以上是本篇的全部内容,欢迎关注我的知乎|简书|CSDN|微信公众号PurePlay , 会不定期分享信号与系统干货。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值