MM定理是公司金融的奠基理论之一,本篇基于Arrow-Debreu证券市场证明了该定理,并给出直观的图解。(内容来自于课堂笔记,夹杂了一些英文,望理解)
理论框架
-
M&M Theorem (Proposition I): Irrelevance of capital structure
-
M&M and the Cost of Capital (Proposition II)
-
M&M and the irrelevance of Distribution Policy(1961)
提出者
Franco Modigliani(1918), CMU, MIT(凯恩斯学派), 1985 Nobel Prize(GE, 生命周期理论).
Merton Miller(1923-2000), CMU, Chicago(芝加哥/自由主义学派), 1990 Nonbel Prize(M&M), 资本结构之父,现代公司金融之父。
-
学生Eugene Fama, 现代金融之父。
-
学生Myron Scholes, 1997 Nobel Prize, 期权定价之父,衍生品之父。
1. M&M Theorem (Proposition I)
【M&M Theorem Ⅰ】假定:
- 公司总现金流不受资本结构影响
- 没有交易成本
- 没有套利机会
则公司总市值不受资本结构影响。
1.1 假设Ⅰ
在没有交易成本和套机机会的情况下,资本结构不影响公司的现金流;
MM定理的另一种表述,在没有交易成本和套机机会的情况下,资本结构影响公司的价值当且仅当,资本结构影响公司的现金流。
该假定排除了以下情况:
- 税收
- 破产成本
- Strategic effects: 竞争对手根据该公司资本结构调整战略
- 债务人对管理层的压力(战略调整等)
直观理解:将饼看作公司的未来现金流
1.2 假设Ⅱ
无交易成本(证券发行费用,信息不对称),核心在于保证有一个complete & competitive市场
Markets are complete: For each state s, there is an Arrow-Debreu security that costs P s P_s Ps at date 0 to purchase and pays one unit of the consumption good at date 1 if and only if state s occurs.
公司发行的任何证券(任何现金流)都可以在市场上找到替代品(可以被完全复制)。
No value to “financial marketing”:单纯通过分割现金流(e.g.创造出市场偏好的现金流)是不可能获得收益的。
1.3 假设Ⅲ
无套利,金融估值是理性的。
1.4 证明
Suppose that the firm’s assets will generate a random cash flow C C C next period (i.e., C ( s ) C(s) C(s) in state s s s). Today the firm issues securities K i ( s ) K_{i}(s) Ki(s) against this cash flow ( i = 1 , 2 , … , N (i=1,2, \dots, N (i=1,2,…,N is the index for different securities like equity, debt, etc.).
Denote C i ( s ) C_i(s) Ci(s) as cash flow next period for security i ( i = 1 , 2 , … , N ) i(i=1,2,\ldots,N) i(i=1,2,…,N) in state s s s, then the firm’s cash flow next period C ( s ) = ∑ i = 1 N C i ( s ) C(s)=\sum_{i=1}^{N}C_i(s) C(s)=∑i=1NCi(s) for each state s s s.
Complete Markets: For each future state of the world s , s, s, there exists an Arrow-Debreu security (i.e., one that pays $$ 1$ iff s s s occurs), trading at a market price of P ( s ) P(s) P(s).
By tracking portfolio using Arrow-Debreu security, the security i i i's value K i = ∑ s = 1 S P ( s ) C i ( s ) K_i=\sum_{s=1}^{S}P(s)C_i(s) Ki=∑s=1SP(s)Ci(s).
Then the total value of this firm is
V
=
∑
i
=
1
N
K
i
=
∑
i
=
1
N
∑
s
=
1
S
[
P
(
s
)
C
i
(
s
)
]
=
∑
s
=
1
S
∑
i
=
1
N
[
P
(
s
)
C
i
(
s
)
]
=
∑
s
=
1
S
[
P
(
s
)
∑
i
=
1
N
C
i
(
s
)
]
=
∑
s
=
1
S
[
P
(
s
)
C
(
s
)
]
\begin{aligned} V &= \sum_{i=1}^{N}K_i \\ &= \sum_{i=1}^{N} \sum_{s=1}^{S}\left[P(s)C_i(s)\right] \\ &= \sum_{s=1}^{S}\sum_{i=1}^{N}\left[P(s)C_i(s)\right] \\ &= \sum_{s=1}^{S}\left[P(s)\sum_{i=1}^{N}C_i(s)\right] \\ &= \sum_{s=1}^{S}\left[P(s)C(s)\right] \end{aligned}
V=i=1∑NKi=i=1∑Ns=1∑S[P(s)Ci(s)]=s=1∑Si=1∑N[P(s)Ci(s)]=s=1∑S[P(s)i=1∑NCi(s)]=s=1∑S[P(s)C(s)]
It means that the firm’s value is determined by it’s cash flow, independent of how it issues securities (M&M 1).
2. M&M and the cost of capital
【M&M Theorem Ⅱ】在M&MⅠ的假设下,WACC独立于资本结构。
证明:
P V = E ( C F ) 1 + W A C C P V=\frac{E(C F)}{1+WACC} PV=1+WACCE(CF)
由M&MⅠ, P V PV PV不随资本结构变化;由假设Ⅰ, C F CF CF不随资本结构变化。因此 W A C C WACC WACC与资本结构无关。
2.1 杠杆增加股权收益率
假设Ⅰ表明无税收,因此
W
A
C
C
=
r
ˉ
∗
=
D
V
r
ˉ
D
+
E
V
r
ˉ
E
WACC = \bar{r}^*=\frac{D}{V}\bar{r}_{D}+\frac{E}{V}\bar{r}_{E}
WACC=rˉ∗=VDrˉD+VErˉE
从而股权收益率将随杠杆增大而增加(与上一章相符合)
r
ˉ
E
=
r
ˉ
∗
+
(
r
ˉ
∗
−
r
ˉ
D
)
D
E
\bar{r}_{E}=\bar{r}^{*}+\left(\bar{r}^{*}-\bar{r}_{D}\right) \frac{D}{E}
rˉE=rˉ∗+(rˉ∗−rˉD)ED
2.2 杠杆增加股权风险
The “asset beta” of firm
β
∗
=
D
V
β
D
+
E
V
β
E
\beta^{*}=\frac{D}{V} \beta_{D}+\frac{E}{V} \beta_{E}
β∗=VDβD+VEβE
Solve for
β
E
\beta_{E}
βE
β
E
=
β
∗
+
(
β
∗
−
β
D
)
D
E
\beta_{E}=\beta^{*}+\left(\beta^{*}-\beta_{D}\right) \frac{D}{E}
βE=β∗+(β∗−βD)ED
从而杠杆将增加股权的系统性风险(即使债务无风险)。
进一步通过CAPM模型可以将股权收益分解为business risk premium和financial risk premium
r
ˉ
E
=
r
f
+
[
β
∗
+
(
β
∗
−
β
D
)
D
E
]
(
r
ˉ
m
−
r
f
)
=
r
f
+
β
∗
(
r
ˉ
m
−
r
f
)
⏟
business risk premium
+
(
β
∗
−
β
D
)
D
E
(
r
ˉ
m
−
r
f
)
⏟
financial risk premium
\begin{aligned} \bar{r}_{E}&=r_{f}+\left[\boldsymbol{\beta}^{*}+\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{D}\right) \frac{D}{E}\right]\left(\bar{r}_{m}-r_{f}\right)\\ &=r_{f}+\underbrace{\boldsymbol{\beta}^{*}\left(\bar{r}_{m}-r_{f}\right)}_{\text{business risk premium}} +\underbrace{\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{D}\right) \frac{D}{E}\left(\bar{r}_{m}-r_{f}\right)}_{\text{financial risk premium}} \end{aligned}
rˉE=rf+[β∗+(β∗−βD)ED](rˉm−rf)=rf+business risk premium
β∗(rˉm−rf)+financial risk premium
(β∗−βD)ED(rˉm−rf)
不同融资结构对于投资者而言仅仅改变现金流的跨期结构,不改其现值/价值。这种改变可以通过资本市场实现,因此两种资本结构对投资者无差异。
2.3 风险债务
M&MⅡ对于有风险债务仍然成立。e.g.有可能破产的情况下M&MⅡ仍成立,前提是无破产成本(假设Ⅱ)。
公司增发债务也不改变公司的价值,但是可能改变公司价值的分配:新债的风险大于旧债,如果新债和旧债有一样的优先级,股东获利,旧债权人吃亏(此种情况下旧债发行人事实上不完全理性);如果新债低于旧债的优先级,则股东价值仍不变。
3. M&M dividend irrelevance theorem
【定理】假定无税收,无交易成本,公司的投融资决策、经营策略固定,那么发放股利与股票回购对股权人无差异。
4. 理论意义
M&M定理表明,若融资决策不影响投资决策,则融资不改变企业价值。同时指出,WACC与资本结构无关;EPS具有杠杆效应,并非越高越好。
If we know what does not matter, we may infer what does.
但现实中,由于税盾、破产成本等存在,融资决策仍然会影响公司价值。