基2FFT原理

本文介绍了离散傅里叶变换DFT的基本概念,探讨了如何通过改进DFT来减少计算量,特别是针对8点DFT的计算优化。接着详细阐述了基2FFT算法,将N点FFT分解为奇偶序列的点FFT,并借助蝶形运算进一步简化计算过程,最后通过实例展示了如何应用蝶形运算实现4点FFT。
摘要由CSDN通过智能技术生成

首发于个人博客

FFT前置知识

FT和DFT

傅里叶变换FT(fourier transform)用于将时域信号和频域信号之间变换,公式如下所示:

对于计算机系统中,无法处理连续的过程,因此离散化为离散傅里叶变换DFT(Discrete Fourier Transform):

取,可将DFT改写为以下公式:

DFT改进(削减计算量)

首先分析原始公式的计算量,取一个8点DFT算法,对于一个点:

  • 需要复数乘法N次,每次复数乘法由四次实数乘法和两次实数加法实现
  • 需要复数加法N-1次,每次复数加法由两次实数加法构成

因此,对于一个点,需要实数乘法共4N次,实数加法共(2N-2+2N)=4N-2次。削减计算量的主要重点在上,使用欧拉公式有:

考虑的情况,有以下公式:

同理有,因此以一个4点DFT为例,有以下公式:

可减少所需要的复数乘法的次数,进而减少对应的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值