目录
由线性分类”看基础概念
1.这里的线性分类&逻辑回归的区别
”逻辑回归&线性回归“ 只有一套参数,”预测行为“是一套参数对某样本的预测值进行分类,
”线性分类“ 是由n套参数(结果有n个种类),”预测行为“是分别对某样本给出不同类别下的得分(使用softmax分类器后是概率),
2.损失函数
基础损失函数
从某样本在各类的的得分情况看损失:
当正确的种类的得分比其他所有种类得分都高是才是ok的
剩下的比分全比”score for correct class“小1时损失为0
正则化
基础损失函数的缺陷:(多个种类得分相同或相近)
引入正则惩罚项:惩罚有些参数不考虑整体性,防止过拟合
终极版损失函数: