神经网络基础

本文介绍了神经网络的基础知识,包括线性分类与逻辑回归的区别,损失函数及其正则化,重点讲解了softmax分类器的损失函数。此外,还详细阐述了梯度下降法,如批梯度下降、随机梯度下降和小批量梯度下降,以及反向传播的原理和在更新权重参数中的应用。
摘要由CSDN通过智能技术生成


由线性分类”看基础概念

1.这里的线性分类&逻辑回归的区别

”逻辑回归&线性回归“ 只有一套参数,”预测行为“是一套参数对某样本的预测值进行分类,
”线性分类“ 是由n套参数(结果有n个种类),”预测行为“是分别对某样本给出不同类别下的得分(使用softmax分类器后是概率),

2.损失函数

基础损失函数

从某样本在各类的的得分情况看损失:

在这里插入图片描述
当正确的种类的得分比其他所有种类得分都高是才是ok的
在这里插入图片描述
剩下的比分全比”score for correct class“小1时损失为0

正则化

基础损失函数的缺陷:(多个种类得分相同或相近)在这里插入图片描述
引入正则惩罚项:惩罚有些参数不考虑整体性,防止过拟合
终极版损失函数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值