机器学习基础
文章目录
机器学习概念
机器学习是什么
什么是学习
- 从人的学习开始
- 学习理论;从实践中总结
- 在理论上推导;在实践中检验
- 通过各种手段获取知识或技能的过程
机器如何学习
- 处理某个特定的任务,以大量的“经验”为基础
- 对任务完成的好坏,给予一定的评判标准
- 通过分析数据,任务完成得更好了
机器学习的开端
机器学习的定义
机器学习主要研究计算机系统对于特定任务的性能,逐步进行改善的算法和统计模型。
机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
机器学习是对能通过经验自动改进的计算机算法的研究。
机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ybvYqCUS-1645528200631)(/Users/hujizhao/Documents/毕业设计文档/机器学习.png)]
机器学习主要分类
机器学习的主要分类
- 有监督学习:提供数据并提供数据对应的结果的机器学习的过程
- 无监督学习:提供数据且不提供数据对应的结果的机器学习的过程
- 强化学习:通过与环境交互并获取延迟返回进而改进行为的学习过程
无监督学习
- 无监督学习(Unsupervised Learning)算法采用一组仅包含输入的数据,通过寻找数据中的内在结构来进行样本点的分组和类聚。
- 算法从没有标记或者分类的测试数据中学习
- 无监督学习算法不是响应反馈,而是识别数据中的共性特征;对于一个新的数据,可以通过判断其是否存在这个特征来做出相应的反馈
- 无监督学习的核心应用市统计学中的密度估计和聚类分析
无监督学习的应用
谷歌新闻
有监督学习
- 监督学习(Supervised Learning)算法构建了包含输入和所需输出的一组数据的数学模型。这类数据成为训练数据,由一组训练样本组成。
- 监督学习包含分类和回归。
- 当输入被限制为一组有限的一组值(离散数值)时使用的是分类算法;当输出可以具有范围内的任何数值(连续数值)时使用的回归算法。
- 相似度学习是和回归和分类都密切相关的一类监督学习,他们的目标是是使用相似度函数从样本中学习,这个函数可以度量两个对象之间的相似度或关联度。
有监督学习的应用
预测房屋出租或出售情况
强化学习
监督学习深入理解
监督学习三要素
- 模型(model):总结数据的内在规律,用数学函数描述的系统
- 策略(strategy):选取最优模型的评判准则
- 算法(algorithm):选取最优模型的具体方法
监督学习的实现步骤
得到一个有限的训练数据集
确定包含所有所有学习模型的集合
确定模型选择的准则,也就是学习策略
实现求解最优模型的算法,也就是学习算法
通过学习算法选择最优模型
利用得到的最优模型,对新数据进行预测或分析
监督学习模型评估策略
- 模型评估
- 训练集和测试集
- 损失函数和经验函数
- 训练误差和测试误差
- 模型选择
- 过拟合和欠拟合
- 正则化和交叉验证
训练集和测试集:训练模型的数据称之为训练集,将用来测试模型的好坏的集合称为测试集
训练集:输入到模型中对模型进行训练的数据集合
测试集:模型训练完成后测试训练效果的数据集合
损失函数:损失函数用来衡量模型预测误差的大小。选取模型f为决策函数,对于给定的输入函数X,f(X)为预测结果,Y为真实结果;f(X)和Y之间可能有偏差,我们就用一个损失函数(Loss function)来度量预测函数的偏差程度,记做L(Y,f(X)),损失函数是系数的函数,损失函数数值越小,模型越小
- 0-1损失函数
- 平方损失函数
- 绝对损失函数
- 对数损失函数
经验风险
模型fx关于训练集的平均损失称为经验风险(empirical risk),记做R emp
经验风险最小化(Empirical Risk Minimization,ERM)
- 这一策略认为,经验风险最小的模型就是最优模型
- 样本足够大时,ERM有很好的学习效果,因为有足够多的经验
- 样本较小时,ERM就会出现一些问题
训练误差和测试误差
- 训练误差(training error):是关于训练集的平均损失。
- 训练误差的大小:可以用来判断给定问题是否容易学习,但本质上并不重要
- 测试误差(testing error):是关于测试集的平均损失
- 测试误差真正反映了模型对未知数据的预测能力,这种能力一般被称为泛化能力
过拟合和欠拟合
正则化
-
结构风险最小化(Structure Risk Minimization,SRM)
- 在ERM的基础上,为了防止过拟合而提出来的策略
- 在经验风险上加上表示模型复杂度的正则化项(regularizer),或者叫惩罚项
- 正则化项一般是模型复杂度的单调递增函数,即模型越复杂,正则化值越大
-
结构风险最小化的典型是正则化(regularization)
奥卡姆剃刀原理:如无必要,无增实体
交叉验证
- 数据集划分
- 如果样本数据充足,一种简单的方法是随机将数据切成三部分:训练集(training set)、数据集(validation set)、测试集(test set)
- 训练集用于训练模型,验证集用于学习方法评估
- 数据不足的时候,可以重复的利用数据——交叉验证(cross validation)
- 简单交叉验证
- s折交叉验证
- 留一交叉验证
分类和回归
监督学习的问题主要可以划分为两类,即分类问题和回归问题
- 分类问题预测数据属于哪一类别。——离散
- 回归问题根据数据预测一个数值。——连续
分类问题的指标评测:精确率和召回率

本文深入探讨了机器学习的基础知识,包括机器学习的定义、主要分类如无监督学习、有监督学习和强化学习。重点阐述了监督学习的三要素:模型、策略和算法,并详细介绍了训练误差、测试误差、正则化和交叉验证等关键概念。此外,还讨论了模型评估策略和分类回归问题的解决方法。
4129

被折叠的 条评论
为什么被折叠?



