文章目录
一.全连接层Fully Connection作用
全连接的核心操作就是矩阵向量乘积
y = W ∗ x y =W*x y=W∗x
本质就是由一个特征空间线性变换到另一个特征空间。因此,dense层的目的是将前面提取的特征,在dense经过非线性变化,提取这些特征之间的关联,最后映射到输出空间上。
如下3x3x5的数据,转换成1x4096的形式。中间实现转换这个过程是一个卷积操作, 卷积操作就是利用了矩阵向量乘积的原理实现
我们用一个3x3x5的filter 去卷积激活函数的输出,得到的结果就是一个fully connected layer 的一个神经元的输出,这个输出就是一个值
FC层在keras中叫做Dense层,正在pytorch中交Linear层
二.API解释
keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_c