医学图像分割

医学影响分割综述总结

lunwen

方法 内容
监督学习 骨干网络的选择、网络块的设计、损失函数的改进
弱监督学习 数据增强、迁移学习、交互式分割研究

医学图像分割的难点:

  1. 医学图像的特征提取,因为医学影像中存在模糊、噪声、对比度低等问题。–CNN
  2. 医学图像通常含有噪声且边界模糊。–U-Net
  3. 目标尺度的大范围变化

1.监督学习

学习一组已知类别的样本调整分类器的参数,使其达到所要求的性能的过程,也成为教师学习。从标记的训练数据中推断一个功能的机器学习任务。

1.1骨干网络的选择

backbone network:(特征提取网络)语义分割的目的是对图像进行像素分类。通常采用编码器-解码器结构的全卷积网络方法。编码器用于提取图像特征,解码器用于将提取的特征恢复到原始图像大小并输出最终分割结果。

1.1.1骨干网络的

U-Net
U-net通过跳跃联系(Skip Connection:跳跃连接,将低分辨率和高分辨率的特征图有效的结合起来,有效的融合高分辨率和低分辨率信息)
U-Net网络模型
U-Net网络结构的核心思想是引入了跳跃连接,使得图像分割的精度大大提升。U-Net网络的主要结构包括了解码器、编码器、瓶颈层三个部分。
编码器:包括了四个程序块。每个程序块都包括3×3的卷积(使用Relu激活函数),步长为2的2×2的池化层(下采样:下采样实际上就是缩小图像,主要目的是为了使得图像符合显示区域的大小,生成对应图像的缩略图。比如说在CNN中的池化层或卷积层就是下采样。不过卷积过程导致的图像变小是为了提取特征,而池化下采样是为了降低特征的维度。)。每个程序块处理后,特征图逐步减小。
解码器:与编码器部分对称,也包括四个程序块,每个程序块包括步长为2的2×2的上采样(上采样实际上就是放大图像,指的是任何可以让图像变成更高分辨率的技术。它有反卷积(Deconvolution,也称转置卷积)、上池化(UnPooling)方法、双线性插值(各种插值算法))操作,然后与编码部分进行特征映射级联(Concatenate),即拼接,最后通过两个3×3的卷积(Relu)。
瓶颈层:包含两个3×3的卷积层。
最后经过一个1×1的卷积层得到最后的输出。

在这里插入图片描述
U-Net网络代码

class Baseline(nn.Module):
    def __init__(self, img_ch=1, num_classes=3, depth=2):
        super(Baseline, self).__init__()

        chs = [64, 128, 256, 512, 512]

        self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)

        self.enc1 = EncoderBlock(img_ch, chs[0], depth=depth)
        self.enc2 = EncoderBlock(chs[0], chs[1], depth=depth)
        self.enc3 = EncoderBlock(chs
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值