医疗图像分割技术(一)

在这里插入图片描述

图像分割演进之路
深度学习下的图像分割

 最近正在看一本有关医疗图像处理技术的书籍,里面有一整个章节在讲解各种医疗图像分割技术,
 与我之前写的两篇文章相比,细分到了医疗领域,医疗图像与其他领域相比,虽万变不离其宗,
 但仍有独特之处,所以想针对医疗领域图像分割再写一个系列的文章,希望对从事医疗算法的同行有所帮助,
 本系列文章分为如下四部分:


       **医疗图像分割概述和基本理论**
       基于模糊聚类的医疗图像分割
       基于可形变模型的医疗图像分割
       基于神经网络的医疗图像分割  

本篇文章主要讲解医疗图像分割概述和基本理论

1概述

2基于阈值的分割

2.1全局阈值

2.2局部阈值

2.3图像预处理

3区域增长

4分水岭

5基于边缘的图像分割

6多谱图像分割

6.1多模态

6.2多时域

1概述:

图像分割就是从背景中分离出感兴趣区域,在医疗领域,图像分割可以用来描绘解剖结构和组织类别,例如器官分割,病灶分割等,还可以用于可视化和图像压缩,是图像处理中非常重要的一个领域。

图像分割基本上可以通过两种方式实现,一种是识别出感兴趣区域内所有的像素,另一种先识别出感兴趣区域的边界来进行分割,第一种方法主要依赖于像素的灰度值,但像素的其他属性,例如纹理等也会被应用于图像分割,基于边界的分割方法主要依赖于图像的梯度。

2基于阈值的分割:

   有多种基于阈值的图像分割技术,有一部分是基于图像直方图,例如,基于整幅图像的直方图选择一个阈值,
   这种方式叫做全局阈值分割;其他的则是基于图像局部属性,例如局部均值和方差,
   或者是局部梯度,这种方式叫做局部阈值分割。

2.1全局阈值:

全局阈值假设图像的直方图满足双峰形状:

图片

这样选取一个阈值就能将图像一分为二,例如,我们选取阈值T,则分割的结果为:

图片

下面是一个全局阈值分割的例子:

图片

除了根据直方图选取分割阈值外,还有许多计算分割阈值的方法,其中一个是基于能够让错分概率最小化的分类模型,下面这篇论文讲述基于该方法实现MR脑部分割:

MR quantification of cerebral ventricular volume using a semiautomated algorithm

他的缺点也很明显,它需要目标与背景有很好的对比度,如果对比度低,或者图像有噪声则效果不理想,现实中很少有图像直方图满足严格的双峰形状。

2.2局部阈值:

当全局阈值不适用时,可以考虑使用局部阈值,局部阈值可以通过如下步骤获得:

1.将整幅图像划分为多个小图像,然后分别计算每个小图像的阈值

2.最简单的可以将所有小图像阈值的均值作为整幅图像的分割阈值

2.3图像预处理:

如果图像对比度低,边界模糊,可以通过图像预处理技术来改善图像直方图,例如中值滤波,如下图所示,图像经中值滤波后直方图出现双峰形状,除了中值滤波还有其他方法,这里就不再一一赘述了。

图片

在Opencv中实现了基本的基于阈值的图像分割技术。

#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>

using namespace cv;
using std::cout;

/// Global variables

int threshold_value = 0;
int threshold_type = 3;
int const max_value = 255;
int const max_type = 4;
int const max_binary_value = 255;

Mat src, src_gray, dst;
const char* window_name = "Threshold Demo";

const char* trackbar_type = "Type: \n 0: Binary \n 1: Binary Inverted \n 2: Truncate \n 3: To Zero \n 4: To Zero Inverted";
const char* trackbar_value = "Value";

//![Threshold_Demo]
/**
 * @function Threshold_Demo
 */
static void Threshold_Demo( int, void* )
{
   
    /* 0: Binary
     1: Binary Inverted
     2: Threshold Truncated
     3: Threshold to Zero
     4: Threshold to Zero Inverted
    */
    threshold( src_gray, dst, threshold_value, max_binary_value, cv::THRESH_TRIANGLE );
    imshow( window_name, dst );
}
//![Threshold_Demo]

/**
 * @function main
 */
int main( int argc, char** argv )
{
   
    //! [load]
    String imageName("D:\\basketball2.png"); // by default
    if (argc > 1)
    {
   
        imageName = argv[1];
    }
    src = imread( samples::findFile( imageName ), IMREAD_COLOR ); // Load an image

    if (src.empty())
    {
   
        cout << "Cannot read the image: " << imageName << std::endl;
        return -1;
    }

    cvtColor( src, src_gray, COLOR_BGR2GRAY ); // Convert the image to Gray
    //cvtColor( src, src_gray, COLOR_BGR2HSV); // Convert the image to Gray
    //! [load]

    //! [window]
    namedWindow( window_name, WINDOW_AUTOSIZE ); // Create a window to display results
    //! [window]

    //! [trackbar]
    createTrackbar( trackbar_type,
                    window_name, &threshold_type,
                    max_type, Threshold_Demo ); // Create a Trackbar to choose type of Threshold

    createTrackbar( trackbar_value,
                    window_name, &threshold_value,
                    max_value, Threshold_Demo ); // Create a Trackbar to choose Threshold value
    //! [trackbar]

    Threshold_Demo( 0, 0 ); // Call the function to initialize

    /// Wait until the user finishes the program
    waitKey();
    return 0;
}

3区域增长

区域增长也叫区域融合,就是寻找具有相同灰度值的像素组,需要手动或者自动设置一个种子点,然后不断地检查周边像素,如果周边像素与种子点相似,则将该像素吸纳进来,整个搜索过程不断地进行直到找不到相似像素为止,这个过程中相似性度量非常重要,可以对比像素点的灰度值,也可以对比以像素点为中心的一块区域内的均值。

图片

在opencv中已经实现了对区域增长的封装。

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include <iostream>
#include "math.h"
 
using namespace cv;
using namespace std;
 
Point recent_Point, recent_Point1;
 
Mat RegionGrow(Mat src, Point2i pt, int th)
{
   
    Point2i ptGrowing;                        //待生长点位置
    int nGrowLable = 0;                                //标记是否生长过
    int nSrcValue = 0;                                //生长起点灰度值
    int nCurValue = 0;                                //当前生长点灰度值
    Mat matDst = Mat::zeros(src.size(), CV_8UC1);    //创建一个空白区域,填充为黑色
    //生长方向顺序数据
    int DIR[8][2] = {
    {
    -1, -1 }, {
    0, -1 }, {
    1, -1 }, {
    1, 0 }, {
    1, 1 }, {
    0, 1 }, {
    -1, 1 }, {
    -1, 0 } };
    vector<Point2i> vcGrowPt;                        //生长点栈
    vcGrowPt.push_back(pt);                            //将生长点压入栈中
    matDst.at<uchar>
  • 1
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 医疗图像识别分割模型是一种利用计算机视觉技术,用于对医疗图像进行分析和识别的模型。它可以帮助医生和医疗专业人士更准确地判断和识别医学图像中的疾病、异常和结构。 医疗图像识别分割模型主要包含以下几个步骤: 1. 数据预处理:医学图像通常需要经过预处理,包括去噪、增强对比度等操作,以提高图像质量和识别效果。 2. 特征提取:通过选择合适的特征,可以更好地表示医学图像中的疾病或结构。常用的特征提取方法包括卷积神经网络(CNN)和传统的图像处理算法。 3. 分割算法:医学图像分割的目标是将图像中的不同组织或结构分开,并标记出每个区域的边界。常用的分割算法包括基于图割的方法、基于阈值的方法和基于深度学习的方法等。 4. 模型训练和优化:通过使用已标注的医学图像数据,我们可以训练分割模型。训练过程中,需要选择适当的损失函数和优化算法,以提高模型的性能。 5. 模型评估和应用:训练完成后,需要对模型进行评估和测试,以检验其分割效果的准确性和可靠性。一旦模型达到预期的效果,它可以应用于实际的医疗图像中,帮助医生进行疾病诊断和治疗的决策。 总之,医疗图像识别分割模型是一种基于计算机视觉技术的应用,它可以帮助医疗专业人士更准确地分析和理解医学图像中的信息,提高医疗诊断的准确性和效率。 ### 回答2: 医疗图像识别分割模型是一种基于计算机视觉技术医疗影像分析方法。医疗图像包括CT、MRI、X光、乳腺照片等。而图像分割是指将医疗图像中的目标区域从背景中分离出来,生成清晰的边界线,提取出需要的关键信息。 医疗图像识别分割模型主要有以下几个步骤: 1. 数据预处理:对医疗图像进行预处理,包括图像去噪处理、图像增强、尺寸调整等。这些预处理可以提高模型的性能和准确度。 2. 特征提取:通过卷积神经网络等深度学习方法,从医疗图像中提取出关键的特征信息。这些特征可以表征医疗图像中的病变区域和正常组织的差异。 3. 分割模型训练:利用已经标注好的医疗图像数据集,训练图像分割模型。常用的分割模型包括U-Net、Mask R-CNN等。这些模型使用特定的损失函数来优化模型的分割效果。 4. 模型评估与优化:通过对测试集的预测结果与真实标注进行比较,评估模型的准确度和性能。根据评估结果,可以对模型进行优化和调整,提高分割的准确度和稳定性。 医疗图像识别分割模型在医学领域具有广泛的应用前景。例如,在乳腺癌的早期筛查中,可以通过图像识别分割模型自动检测肿瘤区域;在脑部影像分析中,可以对病变进行定位和分析;在手术导航中,可以帮助医生更准确地定位手术切口。 然而,医疗图像识别分割模型的应用还面临着一些挑战。首先,医疗图像数据集通常较小,需要更多的数据用于模型训练。其次,医疗图像中的噪声和不确定性较高,对模型的鲁棒性和稳定性提出了更高要求。最后,医疗图像分割结果的准确性、可解释性和可重复性也是需要进一步研究和改进的方向。 综上所述,医疗图像识别分割模型是一种重要的医学影像分析方法,它可以帮助医生快速准确地定位和分析医学图像中的病变区域,对医疗诊断和治疗具有重要意义。 ### 回答3: 医疗图像识别分割模型是一种基于机器学习和图像处理技术的模型,用于识别和分割医疗图像中的不同组织、器官或病变区域。 这种模型有助于医生准确地定位和识别医疗图像中的病变区域,从而提供更精确的诊断和治疗建议。它可以应用于各种医疗图像数据,如X射线图像、CT扫描、MRI图像等。 医疗图像识别分割模型通常采用深度学习方法,如卷积神经网络(CNN),通过多层神经网络来学习医疗图像的特征,并将其分割为不同的区域。模型首先经过训练阶段,通过大量的医疗图像进行学习和调整参数,使模型能够学习到不同组织和病变区域的特征。然后,在测试阶段,模型可以将新的医疗图像输入,并输出该图像中的特定区域。 医疗图像识别分割模型在临床应用中具有广泛的潜力。它可以帮助医生精确定位病变部位,提高疾病的早期筛查和诊断效率,减少漏诊和误诊的风险。此外,该模型还可以用于手术导航和治疗计划,提供更准确的手术操作和治疗方案。 然而,该模型的应用仍面临一些挑战。首先,医疗图像数据量大,而且复杂多样,模型的训练和优化需要更多的计算资源和时间。其次,医疗图像存在噪声和变形等问题,模型需要具备较高的鲁棒性和泛化能力。此外,医疗数据的隐私保护也是一个重要的考虑因素。 总的来说,医疗图像识别分割模型是一种强大的工具,可以提高医疗图像的分析和诊断能力。随着技术的不断发展和研究的深入,相信这种模型将在医疗领域发挥更大的作用,为病人提供更精准和个性化的医疗服务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值