2020李宏毅学习笔记——62.Meta Learning - MAML

1.概念:

什么是meta learning:学习如何去学习
例子:
机器学习了一堆任务后,再过去经验上,成为一个更好的学习者
比如做语音辨识,图像辨识后,学习文字分类更快在这里插入图片描述
life-long和meta-learning的区别:
life-long是一个模型一直学习
meta不是一个模型,而是学会更好的学习

2.meta-learning在这里插入图片描述

在meta-learning中,把学习算法也当作一个函数F,吃进去的是训练资料,吐出来另外一个function
可以视为在这里插入图片描述
区分machine learning和meta learning
meta是要找一个大写的F,输入是训练资料,输出是模型在这里插入图片描述
机器学习的三个步骤:
定义一个function set,定义loss,然后找到最好的function
meta的话,只是把f改成F,learning algorithm F。在这里插入图片描述

3.meta-learning的步骤

3.1 什么叫一组learning algorithm
在gradient descent中,算法如下图
在这里插入图片描述
整个圈起来的过程,就可以看作是一个Learning Algorithm。红色的方块选择不同设计的时候,就等于选择了不同的算法。
现在都是人为决定这些红色部分,让机器自己去学习如何决定红色部分,就是达成了meta learning的一部分。
3.2 如何评价一个F的好坏
训练一个猫狗分类任务,用测试数据测试任务表现怎么样,在机器学习中,要用一组数据来考量好坏,meta-learning中,要用一组任务来考量好坏。
右上角的L即为loss。
在这里插入图片描述

4.meta learning vs machine learning

在machine learning中,准备训练资料和测试资料
在meta learning中,准备训练任务及其对应的资料
其中也有可能需要validation task。
meta-learning在few-shot中可能使用,因为训练资料少,跑的比较快,可以比较好评估。
在few-shot中,通常把train和test称为support set和query set。
在这里插入图片描述

5.怎么找最好的learning algorithm

首先根据loss找到最好的F,然后对新任务进行训练,在用测试数据进行测试,来评估表现。在这里插入图片描述
5.1 benchmark
omniglot

在这里插入图片描述
如何使用
在few-shot classification中
决定多少Way,多少个shot。way表示多少个类别,shot表示多少个example。
在实际训练中,要将符号分为训练组和测试组。
训练时从训练组中找N个character,然后找到K个example。测试时方法一样,但是从测试组中选。
在这里插入图片描述

6.当前的方法

6.1 MAML算法
在这里插入图片描述
学习红框部分的初始化参数。训练网络,得到最好的theta,而这个theta是取决于如何初始化的,即可用Loss函数评估网络的好坏在这里插入图片描述
如何最小化loss呢
可以利用gradient descent。
区分MAML与model pre-training
在model pre-training中,用正在训练的模型来计算loss,而maml中使用训练好的模型在这里插入图片描述在这里插入图片描述
下图中横轴是model parameter,如果是maml中,我们不在意现在的表现,比如图中的phi做初始的参数,将顺着gradient的方向,在两个任务上都走的很好在这里插入图片描述
在model pre-training中,在意现在的表现,但不保证训练后会好。在这里插入图片描述
所以两者的区别在于黄框中的字。MAML在乎潜力,model pre-training中在乎当前表现。在这里插入图片描述
MAML在实战时,假设参数只更新一次,模型就是下图。
theta和phi的关系就是右下角的式子。
只更新一次的理由:快,phi棒到只更新一次就很好,在测试实战时可以更新多次,few-shot中数据有限在这里插入图片描述
6.2 例子
toy examle
每个任务的做法都是估计function,可以多选ab,构造多个task在这里插入图片描述
使用model pre-training,获得的是水平线
做MAML,获得的是下面的线。在这里插入图片描述
omniglot& mini-imageNet在这里插入图片描述
其中first order approx是一种变形:在这里插入图片描述在这里插入图片描述
在论文中,为了简便在这里插入图片描述
在这里插入图片描述
实际实现:
首先用一个taskm,获得thetam,然后用thetam来更新phi,如此下去。
跟model pre-training相比,maml要更新两次在这里插入图片描述
在翻译上的应用:
横轴代表每一个任务上用的训练资料,metaNMT表示MAML,multiNMT表示pre-training,通常meta比较好。在这里插入图片描述
Reptile在这里插入图片描述
想法
可以update很多次,然后根据二者之间的差,让phi走过去
在这里插入图片描述
做的和model pre-training很相似。
他们之间的区别如下:
pre-train走的方向是g1,MAML是g2,reptile是g1+g2在这里插入图片描述
其他算法
除了找初始参数,还能找网络架构、activation等,或者如何更新在这里插入图片描述
思考:
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
李宏毅2020机器学习笔记中,有一个关于注意力机制(Attention)的部分。这部分内容主要介绍了生成模型(Generation)、注意力(Attention)、生成的技巧(Tips for Generation)以及指针网络(Pointer Network)。在生成模型中,主要讲述了如何生成一个有结构的对象。接下来介绍了注意力机制,包括一些有趣的技术,比如图片生成句子等。在生成的技巧部分,提到了一些新的技术以及可能遇到的问题和偏差,并给出了相应的解决方案。最后,稍微提到了强化学习。其中还提到了在输出"machine"这个单词时,只需要关注"机器"这个部分,而不必考虑输入中的"学习"这个部分。这样可以得到更好的结果。另外,还提到了关于产生"ei"的方法,其中有研究应用了连续动态模型自注意力(Self-attention)来学习位置编码的方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [2020李宏毅机器学习笔记-Condition Generation by RNN&Attention](https://blog.csdn.net/zn961018/article/details/117593813)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [李宏毅机器学习学习笔记:Self-attention](https://blog.csdn.net/weixin_44455827/article/details/128094176)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值